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OCT Imaging for Pose Estimation and

Feedback Control of an Articulated Magnetic Surgical Tool
Erik Fredin1∗, Nirmal Pol2∗, Anton Zaliznyi3, Dmytro Fishman3, Eric Diller1,2,4 and Lueder A. Kahrs2,4,5

Abstract—Magnetically-driven surgical tools are a new class
of millimetre-scale devices that could enable procedures such as
minimally invasive neurosurgery due to their high dexterity at a
small size. However, safe and effective control of these magnetic
tools necessitates real-time observation of tool joint angles, which
is challenging inside a surgical environment. Optical coherence
tomography (OCT) is an emerging volumetric imaging technique
offering 3D visualization of tissue and tools simultaneously, which
we explore for joint angle estimation. While some previous studies
have used OCT for estimating the pose of rigid instruments,
those methods are specific to needle-like tools, and often have
slow processing speed. In this work, we benchmark eight deep-
learning models adapted from other 3D modalities to OCT data
showing magnetic tools in a mock surgical environment. The
models are tested in the presence of other objects, occlusion,
noise, and the tool being partially outside of the OCT’s field of
view. The best performing model, VoxelNeXt, is adapted from
3D object detection in LiDAR scans, the first time a model
of this kind is used on medical data. It infers tool pose with
0.6 mm position and 5◦ angular errors, with 40 ms inference
time. We use this model to provide feedback for controlling
a multi-jointed magnetic tool, demonstrating the robustness of
OCT-based feedback control. Code and dataset are available at
https://medcvr.utm.utoronto.ca/ral2025-oct-pose.html.

Index Terms—Computer Vision for Medical Robotics, Machine
Learning for Robot Control, Deep Learning for Visual Perception

I. INTRODUCTION

Minimally-invasive surgery (MIS) offers the potential for
surgical procedures to be performed with smaller incisions,
shorter hospital stays, and reduced trauma, as compared to
open surgery. Robot-assisted MIS is used in disciplines such
as gynecology, urology and gastroterology [1], but robotic
MIS remains relatively unexplored for neurosurgery, primarily
due to challenges in miniaturizing conventional tools with
sufficient dexterity and maintaining accurate observation of
the tool and tissue for precise control.

Over the past two decades, magnetic microrobots have
shown increased potential to perform minimally-invasive med-
ical procedures [2]. Small magnets are embedded in the tip
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Fig. 1. An articulated magnetic surgical instrument in a) an OCT scan, with
detected (red) and ground-truth (green) keypoints, and b) in illustrated concept
showing the key component definitions.

of tools, with magnetic fields generated outside the body
being used to steer the tools wirelessly. Notable examples
of such tools include magnetic capsules [3], needles [4] and
catheters [5]. Applications such as neurosurgery, which require
particularly small tools only a few millimeters across, provide
a particularly challenging scenario. Hong et al. proposed
a flexible needle for neurosurgery, capable of magnetically
navigating narrow neurosurgical sites [6]. Forbrigger et al.
proposed a magnetic gripper capable of grasping tissue and
applying forces of up to 200 mN [7]. A variation on this
magnetic gripper, with a diameter of 4 mm, is used for this
study (Fig. 1). A delivery platform (here a straight metal
tube) positions and orients the gripper base, while its joint
angles are controlled by an external magnetic coil system.
While precise tool joint control is possible with magnetic
fields, effective control of these multi-jointed magnetic tools
requires feedback on its joint angles, which is particularly
challenging given the constrained environment of minimally
invasive neurosurgery. Feedback can be obtained by using
medical imaging systems like ultrasound, magnetic resonance
imaging (MRI), endoscopy, or optical coherence tomography
(OCT). However, ultrasound has limitations in image resolu-
tion, and MRI interferes with the tool’s magnetic actuation.
Endoscopy has been explored for estimating the pose of
surgical tools [8], [9], but these endoscopic approaches face
challenges from variable lighting, glare, and poor subsurface
imaging capabilities. Furthermore, endoscopic feedback faces
difficulties with determining the ground truth on the tool’s
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3D pose. However, 3D OCT scans allow for ground truth
annotation from just the scans themselves. Because of this,
and their ability to generate high-resolution 3D images, we
examine OCT for providing pose-feedback in this work.

OCT can generate high-resolution 3D images of small tools
using low-coherence interferometry, and also possesses sub-
surface tissue imaging capabilities. OCT has been previously
explored for pose estimation of rigid surgical instruments in
retinal surgery, though these methods lack real-time perfor-
mance [10]–[12]. Gessert et al. investigated two deep-learning
models to estimate the pose of a rigid marker using OCT
scans [13]. While their models processed scans in real-time,
their approach requires modifications of surgical tools using
their markers.

In summary, while magnetic tools require pose feedback
for effective control, current pose-estimation methods for OCT
images have not been used for tracking markerless jointed sur-
gical tools. This work proposes a deep learning framework for
estimating the pose of an instrument—similar in functionality
to [7], [14]—from OCT volumes acquired at 20 Hz, which is
faster than current conventional OCT systems. The framework
achieves 0.6 mm positional accuracy and 5° joint angle error
under challenging conditions such as occlusion, the presence
of other objects, and mirroring, and further demonstrates its
efficacy for feedback control of a magnetic tool. We present
the following contributions:

• We evaluate eight diverse model architectures for mark-
erless keypoint detection without needing physical mod-
ification, uncovering that a sparse CNN — leveraging
techniques from LiDAR and self-driving community —
yield substantially better accuracy than dense CNNs.

• Demonstration of high-speed volumetric OCT feedback
control by integrating our best-performing pose estimator
into a closed-loop pipeline that drives our small, articu-
lated magnetic tool.

• We provide our annotated volumetric OCT dataset for
multi-jointed surgical-tool pose estimation, containing
realistic imaging artifacts (e.g., speckle noise, shadowing,
mirroring), occlusions, and partially out-of-view configu-
rations, and uniquely supporting 8-DoF labels; prior OCT
pose datasets are few [15] and limited to 6-DoF for rigid
needle tools [11], [15].

II. RELATED WORKS

A. Pose Estimation in OCT Images

The use of OCT for pose estimation of surgical instruments
has thus far been limited to rigid needles. Some works [10],
[11] segment individual slices and then calculate the needle
pose by composing the segmentation data and using additional
algorithms, such as ICP. While these methods localize needles
with micrometer precision, they have a slow inference time of
200-300 ms, and thus too slow for feedback control. Gessert
et al. proposed the 3D CNNs Inception3D and ResNeXt3D
to directly regress a marker’s pose [13]. This approach was
both accurate and fast, achieving a mean absolute error of
14-21 µm and an average speed of 21 ms for a resolution
of 64x64x16. However, their models have yet to be tested on

marker-free tools, warranting further investigation. Gessert et
al. also showed that 3D OCT volumes can be compressed
into 2D maximum intensity projection (MIP) and normalized
depth images taken from canonical directions (axial, coronal,
sagittal). Their best 2D results were obtained by pairing a sin-
gle enface-view MIP with its corresponding depth-normalized
image extracted from the same volume, yet this 2D approach
lagged behind their 3D models.

B. Deep learning for Medical Image Segmentation

While the use of deep-learning (DL) for pose estimation on
OCT images is still limited, it is more common for segmen-
tation. The U-Net [16] was a major breakthrough for medical
image segmentation and DL in general. It introduced an
autoencoder structure, which is still used in both segmentation
and pose estimation today. Lee et al. applied a modified U-
Net architecture for segmentation on OCT images [17]. Many
OCT segmentation studies between 2015-19 used variations
of either the U-Net or the DenseNet [18] architecture [19].
Models for MRI or CT scans continued to build on the au-
toencoder structure of the U-Net [20], [21]. Notably, MedNeXt
uses this structure and takes inspiration from transformers
[22], and leads the AMOS22 benchmark. Autoencoder-based
segmentation models can be adapted to pose estimation, since
their structure can also be used to generate heatmaps to detect
keypoints.

C. Hand-Pose Estimation

Deep learning-based pose estimation has been explored ex-
tensively for 3D DL domains outside of medical images. Hand
pose estimation uses RGB-D images to train DL models, and
requires estimating a high number of DoFs. To achieve this,
RGB-D images are converted to 3D voxel volumes, making
this approach similar to OCT imaging which generates voxel
volumes directly. Moon et al. proposed the V2V-PoseNet,
marking an important baseline for hand pose estimation [23],
though its performance degrades under occlusion or severe
viewpoint variation. To address these challenges, Cheng et
al. developed a virtual view selection and fusion framework
[24], where input depth is re-projected into multiple virtual
views. Their method selects the most informative views using
a learned confidence network and fuses the pose estimates,
resulting in improved accuracy.

D. 3D Object Detection

3D object detection in autonomous driving estimates 3D
bounding boxes of objects such as cars, pedestrians and bikes
in LiDAR data. LiDAR data is typically very sparse, rendering
dense convolutions quite inefficient for processing it. The
method SECOND [25] introduced sparse convolutions [26]
which skip empty voxels, and are significantly more efficient
than dense convolutions. Sparse CNNs have become backbone
networks for many 3D object detection approaches [27]–[29].
However, these rely on architectural features such as anchors
or birds eye view (BEV) projection, which assume that objects
lie on a known 2D plane. While this holds true for cars driving
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on a road, it does not for surgical tools in OCT data. On
the other hand, VoxelNeXt is a comparatively simple model
for estimating 3D bounding boxes, yet still achieves state-of-
the-art results [30]. It features a sparse backbone network,
followed by a sparse head that classifies individual voxels and
regresses bounding box locations from them. While it projects
3D data to BEV, the model can be modified to process the data
entirely in 3D.

E. Model Selection

Based on this review, we select the following models for
pose estimation on OCT images: Gessert et al. (ResNeXt-3D
and Inception-3D) [13], V2V Pose-Net [23] and MedNeXt
[22]. We also test a 3D implementation of ResNet-50 [31].
Inspired by [13] and [24], we implement a multi-view ap-
proach (Section IV-B). Finally, we adapt VoxelNeXt [30] to
pose estimation in OCT images (Section IV-C).

III. DATASET GENERATION

A. Dataset Overview

A total of 793 OCT volumes were collected which contained
the surgical tool in diverse joint configurations, orientations,
and positions. The volumes were captured with a shape of
(1096, 1936, 1152) where 1096 refers to the number of
cross-sectional slices (i.e. B-scans). The voxel dimension was
measured to be approximately 16 x 14 x 9 µm3. Each of
the volumes were also accompanied with their corresponding
downsampled version of (28, 1936, 1152) which are captured
at approximately 20 Hz from OptoRes GmbH OMES System.
The larger volumes are helpful for annotations while their
corresponding smaller volumes are necessary for real-time
processing.

Our dataset contains OCT volumes of the gripper tool in
ideal conditions where the tool was fully visible, with no
occlusions, artifacts, external objects, or out of the field-
of-view (FOV). In this No Artifact dataset, only one joint
was actuated at a time and kept static during imaging. This
group also contained some sequential volumes with continuous
elbow or jaw motion which did not contain any artifacts. These
sequential volumes were excluded from validation and testing
due to their minimal inter-volume variation.

The dataset also includes artifacts such as external objects
in the scene (e.g., scissors, rods, tissue phantoms), occlusions
(via object placement or shadowing), partial tool visibility
(out-of-FOV), and OCT-specific mirroring artifacts caused by
the tool crossing the zero-delay line. The mirroring artifact,
unique to Fourier Domain OCT systems, occurs when the
object crosses the zero-delay line and appears flipped or
partially flipped on itself. We included mirroring artifacts
because they are common in current commercial OCT systems,
making the dataset more representative of real-world use. A
combination of these artifacts were also collected. Fig. 2 shows
representative examples, and Table I summarizes the dataset
distribution. Volumes were split into train/validation/test sets
within each artifact category.

While many of the mentioned artifacts are not as prevalent
or labelled in previous OCT related works [11]–[13], [15],

TABLE I
VOLUMES PER CATEGORY FOR TRAIN, VALIDATION, AND TEST SETS

Grouped Category Train Validation Test
No Artifacts 257 26 32
Occlusion 25 5 7
Partially Out of View 18 4 5
Mirror 24 6 8
Other Objects 34 8 11
2 Artifact 125 25 45
3 Artifact 64 15 29
4 Artifact 12 2 6
Total 559 91 143

Fig. 2. Example OCT volumes and artifacts in dataset.

their inclusion in our dataset allows us to examine potential
failure cases that can exist for an OCT based pose estimation
model. The training dataset was augmented by randomly
translating the gripper to different positions, applying random
intensity, contrast variations and also randomly moving the
gripper partially out of view. This resulted in a total training
dataset size of 2236 volumes.

B. Dataset Annotation

Annotating a 3D volumetric dataset for pose estimation
is a challenging and time consuming process. We developed
a 3D annotation method for volumetric data using Mayavi
[32]. The datasets were annotated by converting the voxels
to point clouds and labelling the 3D point clouds in Mayavi.
The annotators were required to position 3 bounding boxes
(each containing 2 key points at the front and back surfaces
of the boxes) at the appropriate locations on the gripper in the
image. The bounding boxes were placed on the gripper using
sliders or the annotators could input the voxel coordinates. The
boxes were also fixed in size to indicate which bounding box
must be placed on their respective links on the gripper. Fig. 3
show an example placement of these boxes on each link. This
approach for annotating the 3D volumetric data resulted in an
average inter-annotator error of 0.3 degrees for joints angles
and a positional error of 19 µm for placement of keypoints. To
ensure reliability, we minimized bias by cross-checking anno-
tations across multiple annotators, reconciling disagreements,
and flagging rare ambiguous cases for adjudication. The time
to annotate varied between 2-5 minutes per volume depending
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on the complexity of artifacts in the volume. We provide this
annotation method in our repository.

Fig. 3. (a) Unlabelled OCT volume, (b) Labelled OCT volume with bounding
boxes for each link.

IV. 8-DOF POSE ESTIMATION

A. Overview

The goal of pose estimation in this work is to estimate
the 6-DoF position and orientation of the tool, as well as
its joint angles θ1 and θ2 (see Fig. 1). We use a keypoint
detection approach to this end. Fig. 4(a) shows the placement
of the keypoints on the tool. Six keypoints (shown in blue) are
used to calculate the tool’s joint angles. These keypoints are
placed at the end of each link, which enables the calculation
of link orientations and joint angles from them. The wrist
features further keypoints (shown in green), which are used to
determine the tool’s orientation. This is achieved via a Kabsch-
Umeyama algorithm performing registration between these
detected keypoints and their modeled counterparts. Keypoints
on links other than the wrist are not used, as errors in joint
angle estimation would affect registration if they were.

The training and validation data from Table I was used for
training and hyperparameter tuning. The final benchmarks in
Table II are performed on the test data. Finally, Table III shows
the performance of our best model on each category.

B. Multi-View MIP

Inspired by the results for 25 viewpoints in [24], we also
adapted a multi-view selection approach using 25 uniformly
spaced viewpoints distributed over the upper hemisphere of
each volume. Then similar to [13], each view generates a 2D
MIP and normalized depth of the volume. This is processed by
a shared lightweight backbone to extract features. A dedicated
confidence head then assigns a score to each view based on
these features. Simultaneously, a pose head generates an initial
pose prediction for each view using the same features. Finally,
leveraging the confidence scores, the pose predictions from
the top 15 most informative views are selected and combined
through a weighted average. We also implement Inception-2D
model for the single enface-view MIP and normalized depth
approach from [13] as a baseline.

C. VoxelNeXt

Fig. 4(b) shows how VoxelNeXt is used for keypoint detec-
tion on OCT data. We apply thresholding to raw OCT scans
to filter out low-intensity voxels, producing a sparse voxel
volume. The raw OCT data collected is highly imbalanced,

Fig. 4. a) Location of keypoints on surgical tool. Blue keypoints are used
to compute joint angles, green keypoints to compute tool orientation and
blue/green keypoints for both. b) Overview of our VoxelNeXt-based approach
for keypoint detection.

having a dimension of (28, 242, 144) after downsampling
along the y- and z-dimensions. VoxelNeXt regresses keypoint
coordinates, and high imbalances between the dimensions in
the volume can lead to sub-optimal training for this task. To
address this, each axis is scaled to match the scan’s real-world
size as seen in Fig. 4(b). This is possible because sparse voxel
volumes store voxel coordinates in a list (similar to point
clouds), in contrast to dense volumes.

The main architectural change is that the present adaptation
estimates only keypoints rather than bounding boxes. Further,
it estimates a fixed number of keypoints, M, in contrast to the
original, which detects a variable number of objects between
different scans. For N voxels, our adaptation generates a
N ×M heatmap and a N × 3M per-voxel location estimate
for each keypoint. During inference, the K highest scoring
voxels for each keypoint are selected, and their weighted
average is used as the final estimate, where K is a configurable
hyperparameter. While the original architecture uses a Focal
Loss [33] for training heatmaps, we empirically found a KL-
divergence loss to work better. This models the heatmaps
as a distribution, rather than as individual probabilities for
each voxel. In addition, we place the heatmaps’ centers at the
keypoint’s location, in contrast to the original, which places
them at the closest voxel. Finally, we removed all components
of the model that used 2D convolutional operations, treating
the data as a 3D volume throughout all layers.

V. FEEDBACK CONTROL

A. Setup

To use OCT scanning as feedback, we mount the OptoRes
OCT probe on top of the workspace where the tool is con-
trolled (Fig. 5). The electromagnetic coil system (ECS) used
to control the tool consists of 8 coils mounted below. The coil
system therefore has no more space constraints than a table.
The tool is attached to a delivery platform consisting of two
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Fig. 5. Experimental setup for the control experiments, in particular the pick
and drop-off experiment. An OCT probe is mounted above the workspace.
The tool is attached to a delivery platform, which translates it horizontally
and rotates it around it’s centre axis.

motors. The first motor rotates the tool around its center axis
(α), while the second motor moves it horizontally (Fig. 5).
This adds 2 DoF to the tool’s magnetically actuated joints,
meaning the system has 4-DoF overall.

The OCT scans must be collected and processed with
minimal latency to enable feedback control. The scans are
collected in the (28, 1936, 1152) format, down-sampled to (28,
242, 144) and low intensity voxels are filtered out (as described
in Section IV-C). We use 2 NVIDIA RTX 2080-Ti GPUs,
allowing for scan collection at 20 Hz and pose estimation
at 20-25Hz. These two processes are computed in parallel,
meaning that the next scan is collected as the pose is estimated
on the current scan. We use the best performing model (see
Table II) to estimate tool pose. Due to hardware constraints,
the coil system is controlled by a separate computer, with data
transfer introducing an additional 1-5 ms latency.

Inspired by [7], we use a PID controller to determine the
currents, u, needed for controlling the tool:

u = B†(q)

(
Kpe+Kdė+Ki

∫
e dt+KrτS(qd)

)
, (1)

where B† is the pseudo-inverse of the current actuation matrix,
q = [α, θ1, θ2] is the state of the tool, e = qd − q is
the state error. Kp, Kd, KI and Kr are tuning parame-
ters. Besides the standard PID terms, the controller contains
τS = τint(qd) + kqd, where τint are the forces between
the tool’s on-board magnets and kq models the tool’s flexure
joints. These directional forces act unevenly on the tool, and
accounting for them in the controller thus ensures smoother
behavior and easier tuning. Feedback on q is provided via the
OCT system. The tool’s position is not included in q, since
we confine experiments to the coil system’s centre. The centre
features homogenous fields, meaning that B† is independent
of the tool’s position within this area. B† has been calibrated
via the method described in [34].

B. Experiments

1) Step-Response: To assess the PID controller’s ability to
respond to a control input, we record several step responses
for both joints. The tool is initially placed into a neutral
configuration, and the PID controller receives setpoints of
(10◦, 20◦, 30◦, 40◦, 50◦) for a given joint. Each input lasts
10 seconds before changing to the next. Step-responses are
tested for each joint individually. To minimize rise-times and
overshoots, we tune the PID controller using gain scheduling.
New controller gains are chosen every 10◦ for both joints.
The range for these controller gains are: Kp = 0.7 − 2.5
mN/rad, Kd = 0 − 0.3 mN/rad, Ki = 0 − 0.28 mN/rad, and
Kr = 0− 0.45 mN.

2) Pick and Drop-Off: We conduct a pick and drop-off
experiment to test the tool’s dexterity. The aim is to pick
up a tube protruding out of a fixture and dropping this tube
into a bin (Fig. 5). The tool is tele-operated using a gamepad
controller. The time taken to pick up the tube and the time
taken to place it are recorded separately. The tool picking up
the tube and holding it for more than 1 second is considered a
successful pickup, while dropping it into the bin is considered
a successful drop-off. If a trial completes both successfully it
is marked as a success, if only pickup is successful it is a
partial success, and it is considered a failure if neither are
successful. In total, we collected 18 trials. To demonstrate
efficacy of closed-loop PID control, we compare it using the
same experiment with an open-loop method.

3) Handover Experiment: We conduct a hand-over ex-
periment in which OCT distinguishes two visually identi-
cal tubes—one empty and one containing 0.2% intralipid,
via speckle-variance analysis. Fluid detection uses speckle-
variance OCT, where N repeated volumes Ii(x, y, z) are
acquired at the same location, and the voxel-wise variance
σ2 highlights the dynamic molecular scattering in the fluid.
Regions with motion exhibit elevated σ2 relative to static tis-
sue, providing intrinsic contrast and automatic differentiation
of moving objects. The gripper selects the fluid-filled tube and
passes it to a secondary tweezer tool, demonstrating OCT’s
dual role in diagnosis and control.

VI. RESULTS AND DISCUSSION

A. Pose Estimation

Table II shows the performance of all models discussed
in Section IV on the test dataset. The position error is the
mean keypoint detection errors in mm for all 11 points. θ1
and θ2 show the mean errors for the two joint angles. Rx,
Ry and Rz show the orientation errors, defined as the Euler
angles between the tool’s estimated and ground-truth SE(3)
rotations. VoxelNeXt leads by a wide margin, achieving a
keypoint position error of 0.6 mm. Consequently, the orienta-
tion and joint angle errors of VoxelNeXt are also lower than
all other models. The θ1 error of just 3.5◦ is particularly
important, since accurate feedback on the tool’s wrist joint
is instrumental for precise feedback control. θ2 has a higher
error at 6.6◦, which is acceptable since the finger requires less
precise control as it is often either fully open or fully closed.
VoxelNeXt’s orientation errors range from around 2.4◦−6.1◦.
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TABLE II
COMPARISON OF POSE ESTIMATION MODELS, VALUES SHOWN REPRESENT AVERAGE ERROR TO GROUND TRUTH

Method x, y, z (mm) Rx (°) Ry (°) Rz (°) θ1 (°) θ2 (°)
ResNet 2.3 26.2 13.1 16.8 12.8 12.0

ResNeXt3D 1.8 13.7 7.1 7.7 8.4 9.7
Inception3D 1.6 17.9 7.8 9.3 9.3 10.4
V2VPoseNet 3.1 28.3 12.5 35.6 35.6 43.0

MedNext 3.5 34.8 14.3 30.5 33.8 30.8
MIP 2.2 22.5 11.2 11.2 13.8 13.9

Multi-view MIP 1.9 16.1 7.7 9.8 9.8 9.9
VoxelNeXt 0.6 6.1 2.4 3.9 3.6 6.5

TABLE III
VOXELNEXT PERFORMANCE WHEN DEALING WITH DIFFERENT CHALLENGES IN OCT VOLUME. VALUES SHOWN REPRESENT AVERAGE ERROR

No Artifacts Mirror Artifact Occlusion Out of View Other Objects in FOV Multiple Artifacts
Position & Orientation Error

Position (mm) 0.3 0.6 0.8 0.8 0.6 0.7
Rx (°) 1.5 4.2 4.9 8.0 7.3 8.0
Ry (°) 1.0 2.5 3.3 4.9 2.0 2.8
Rz (°) 1.0 2.6 2.4 3.4 3.3 5.4

Joint Error (°)
θ1 1.9 2.2 4.1 4.6 3.4 4.4
θ2 1.6 13.1 2.9 16.4 5.9 7.6

While these errors show promise, they have the potential to
disrupt safe and effective magnetic actuation. Lowering these
errors, along with θ2 error, is an important area of future work.

The second best performing model, Inception3D, has a
position error over 260% higher, at 1.6 mm with similar
performance as ResNeXt3D. CNNs directly regressing key-
point coordinates (Inception3D, ResNeXt3D and ResNet3D)
outperformed those that generate heatmaps for keypoint detec-
tion (MedNext, V2V PoseNet). A potential explanation could
be the large imbalance between the x and y, z axes of the
scans. This does not affect regression based models, since their
regressed target coordinates are normalized.

The Inception-2D MIP model performed worse than the
multi-view MIP model. Diverse viewpoints enable certain MIP
images to indicate the keypoint locations, whereas other view-
points are more ambiguous to evaluate as the MIP image might
show the gripper occluding itself. We also note that directly
regressing the 8-DoF pose instead of the keypoints leads
to significantly poorer performance. Although the multi-view
strategy yielded modest improvements, its performance under
occlusion and out-of-view conditions remained unsatisfactory,
as the original volumes (already downsampled to 28 B-scans)
are further compressed into 2D projections that obscure fine
details and make tool pose identification difficult even upon
visual inspection. This loss of depth information and inter-slice
context limits the approach to outperforming VoxelNeXt.

We also analyze VoxelNeXt’s performance in scans contain-
ing mirror artifacts, occlusions, gripper partially out of view,
gripper with other objects in the scene, and any combination
of these artifacts in Table III. The model performs well in
position, orientation, and joint angle estimation when there
are no artifacts. In the presence of mirror artifacts, there is
an increase in θ2 error. This is expected, because the jaw link
3 is most likely to reach the top of the volume workspace
causing the jaw to mirror downwards into the volume. The

Fig. 6. Ground-truth keypoints (green) vs detected keypoints (red) using
VoxelNeXt on a scan where the tool is partially out of view and mirrored.

model examines local regions and correctly identifies the link
3 tip where the keypoint would typically be present. But it fails
to recognize that link 3 has partially mirrored downwards in
the volume as shown in Fig. 6. A potential mitigation strategy
could entail adding a detection head to detect mirroring and
then reflecting the predicted keypoint 5 across the zero-delay
plane. When there are occlusions present, there is a small
increase in errors. Similarly, out of view scenarios present a
larger increase in error for the second joint. The presence of
other objects in the scene also shows an increase in errors if
objects in the workspace contain features similar to the gripper.
Finally, in the presence of multiple artifacts, we observe an
increase of 2.5◦ and 6.0◦ in error for θ1 and θ2 respectively.

B. Feedback Control

1) PID Step-Responses: Fig. 7 shows the step response
behavior of the tuned PID controller. Overall, the controller
achieved an average rise time of 0.75 seconds and an aver-
age overshoot of 6.5% across both joints. Both metrics are
promising, and indicate similar step-response behavior as other
magnetic tools [7]. However, at higher setpoints (especially
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Fig. 7. Step response of the tool wrist angle under PID control

50◦) both joints experience minor increases in oscillation. This
highlights the system’s complex dynamics, where forces such
as the inter-magnet force (τint) and joint stiffness potentially
have a greater effect at higher setpoints. A limitation to our
system is the slow rate of feedback. The system takes 50
ms to collect a scan and another 40-50 ms to estimate the
tool’s joint angles. Since these processes are parallelized, our
OCT feedback has a sampling rate of 20 Hz, with each pose
estimate having a delay of 100 ms. This reduces the system’s
ability to quickly adjust the torque during actuation. Studies
in surgical latency report that greater delays lead to longer
task completion times, increased tool motion, and a higher
frequency of errors [35]. A key area of future work is to test
with faster OCT hardware and optimize inference.

2) Pick and Drop-Off: Table IV summarizes the perfor-
mance of the magnetic gripper when executing a pick-and-
drop routine with and without OCT feedback. In the open-
loop condition (no imaging or pose updates after the initial
command), the gripper succeeded in lifting the target tube in
only 50% of the trials. Failures arose because (i) the jaws did
not close firmly around the tube, and (ii) the grasp weakened
as Joint-1 bent to the drop-off position, causing premature
release. Accurate drop-off was achieved in 5.6% of attempts.

TABLE IV
AVERAGE RESULTS FROM THE PICK UP AND DROP-OFF CONTROL

EXPERIMENT

Open-Loop Closed-Loop
Average pick-up time (s) 37.1 13.4
Average pick-up successes (%) 50 94.4
Average drop-off time (s) 12 15.4
Average drop-off successes (%) 5.6 83.3

Introducing closed-loop control with OCT improved the task
execution. Continuous pose estimates allowed the controller to
maintain a tight grasp, yielding an 83.3% success rate for pick
and placement. The combined pick and drop off time is 28.9
seconds for closed-loop control, and thus faster than open-
loop (49.1 seconds). These results highlight the fragility of
open-loop control for magnetic tools, as this relies on heavily
accurate modeling, fabrication and lack of disturbances. These
conditions are in practice infeasible to achieve in real-world
settings, leading to the poor results for open-loop control.

Fig. 8. a) Placement of tubes relative to gripper, b) Top view of speckle
variance OCT volume with red line indicating region where cross section
was taken. Brighter regions show more motion. Tubes are outlined in yellow.

OCT-based closed loop control on the other hand enables
robust control over gripping the tube and dropping it into the
bin. Furthermore, the placement of the pick-up and drop-off
locations required the tool to move partially out of the FOV
of the OCT workspace. Despite this challenge, the feedback
controller can complete the task majority of the time.

3) Handover Experiment: Fig. 8 illustrates a pick-and-
pass scenario in which two micro-tubes are presented in
the workspace—one filled with Intralipid solution, the other
empty. The contents are indistinguishable to human vision and
conventional RGB imaging (Fig. 8a).

To expose the sub-surface fluid, we acquire 30 consecutive
OCT volumes of the static scene and compute the speckle-
variance volume. Voxels that contain moving scatterers (In-
tralipid) exhibit larger temporal variance and appear bright in
the speckle-variance rendering (Fig. 8b). An orthogonal slice
in the figure identifies the fluid-filled tube, highlighting OCT’s
unique ability to reveal sub-surface details. The combination
of speckle variance OCT, our pose-estimation model and the
closed-loop controller enables the operator to grasp the correct
tube and transfer it to a tweezer in 23 s, despite the presence
of multiple objects, specular noise, and clutter in the scene.

VII. FUTURE WORK
This work used an OCT scanner based on a dual-axis

scanning galvanometer mirror, which is impractical for MIS
neurosurgery due to its size. However, the scanner could
be replaced with smaller forward scanning endoscopic OCT
probes [36]. Furthermore, our current system achieves a slow
rate of feedback. Improving this rests on faster OCT scan
acquisition via improved hardware and faster model inference.
Regarding the former, OCT systems with faster volumetric
acquisition rates have been demonstrated [37]. Finally, con-
ducting more extensive control experiments for a wider array
of surgical tasks is important future work, including more
realistic surgical sites (e.g., cadaver brains). Success of such
trials could benefit from improvements to the tool’s controller
design. Designing and testing more advanced controllers for
magnetic tools is thus also subject to future work.
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