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Abstract
Purpose: Ultrasound (US) imaging is a promising modality for real-time mon-
itoring of robotic capsule endoscopes navigating through the gastrointestinal
(GI) tract. It offers high temporal resolution and safety but is limited by a
narrow field of view, low visibility in gas-filled regions, and challenges in detect-
ing out-of-plane motions. This work addresses these issues by proposing a novel
robotic ultrasound tracking system capable of long-distance 3D tracking and
active re-localization when the capsule is lost due to motion or artifacts. Meth-
ods: We develop a hybrid deep learning-based tracking framework combining
convolutional neural networks (CNNs) and a transformer backbone. The CNN
component efficiently encodes spatial features, while the transformer captures
long-range contextual dependencies in B-mode US images. This model is inte-
grated with a robotic arm that adaptively scans and tracks the capsule. The
system’s performance is evaluated using ex-vivo colon phantoms under varying
imaging conditions, with physical perturbations introduced to simulate realistic
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clinical scenarios. Results: The proposed system achieved continuous 3D track-
ing over distances exceeding 90 cm, with a mean centroid localization error of
1.5 mm and over 90% detection accuracy. We demonstrated 3D tracking in a
more complex workspace featuring two curved sections to simulate anatomical
challenges. This suggests the strong resilience of the tracking system to motion-
induced artifacts and geometric variability. The system maintained real-time
tracking at 9–12 FPS and successfully re-localized the capsule within seconds
after tracking loss, even under gas artefacts and acoustic shadowing. Conclusion:
This study presents a hybrid CNN-transformer system for automatic, real-time
3D ultrasound tracking of capsule robots over long distances. The method reli-
ably handles occlusions, view loss, and image artefacts, offering millimeter-level
tracking accuracy. It significantly reduces clinical workload through autonomous
detection and re-localization. Future work includes improving probe-tissue inter-
action handling and validating performance in live animal and human trials to
assess physiological impacts.

Keywords: Capsule Robots, Robotic Ultrasound 3D Tracking System, Ultrasound
Imaging, Deep Learning

1 Introduction
Minimally-invasive capsule-based technology is a promising alternative to standard
endoscopic procedures for the diagnosis and treatment of diseases within the GI tract.
Traditional endoscopic methods typically require anesthesia and poses the risk of
bowel rupture, while allowing for very limited access to the deepest portions of the
small intestine [1]. Capsule-based technology remains a promising means of effectively
evaluating the small bowel, however, manipulating robot agents remotely to sample
the intestinal-contents requires real-time and accurate tracking of the robot’s loca-
tion within the GI tract. Such capsule tracking remains an open research challenge.
Extensive research has been conducted on magnetic localization technology [2]. How-
ever, the effective operating distance between the workspace and the sensor arrays is
often constrained by the limited range of magnetic fields that diminish over distance.
Additionally, magnetic tracking lacks the capability to localize the capsule position
with respect to the anatomy of the GI tract, which is required for targeted sampling
or drug delivery. US-based capsule tracking would overcome these barriers using a
safe, non-invasive imaging method which can concurrently image the capsule and the
surrounding GI tract anatomy in real-time.

Although US imaging is commonly used as a diagnostic tool by skilled sonographers
in clinical practice, capsule tracking presents several unique challenges. US imaging
is unable to image objects out of the scanning plane and has a limited field of view
(FOV) within the scanning plane, which restricts the observable workspace to several
millimeters [3]. The highly echogenic and heterogeneous tissue environment creates
high-contrast imaging artefacts [4], which can obscure and create a visual resem-
blance to a pill-shaped capsule. Furthermore, intraluminal gas is highly echogenic and
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produces different artefacts whether as bubbles or pockets of gas, which can cause
substantial degradation of the ultrasonographic image [5].

Fig. 1 The automatic robotic US system overview. (a) The proposed robotic US system for 3D
tracking of capsule robots, where the inset is the defined channel-like workspace with the embedded
porcine colon and simulated intraluminal gas. The yellow arrows represent the motions of the trans-
lational stage. The capsule agent is shown at the top corner. The image plane is XGY G-plane, the
robot arm moves along XG and ZG-axis. (b) Robot arm control scheme with the US tracking feed-
back in a closed loop, which allows for 3D scanning of the workspace and real-time US feedback using
a B-mode scanner.

One solution which allows for direct 3D visualization of target agents is the use of
a 3D US probe which generates a volume visualization directly. Stationary 3D probe-
based tracking of biopsy needles [6, 7] used deep learning-based semantic segmentation
methods to detect needle position. However, in these works, the probe was fixed during
scanning, which still renders a limited imaging area and is not feasible for tracking
moving capsule robots over the entire GI tract. Thus, for tracking robotic agents over
the longer GI tract, a portable, 2D probe is superior to 3D probes due to its higher
speed and lower data processing requirements. For real-time tracking, a robot arm
can be used to automatically move the US probe in response to motion of the robot
agent. Although state-of-the-art robotic US tracking systems [8–10] achieved over 400
mm long-distance 3D tracking of microrobots, these methods were validated in less
physiologically representative environments (i.e., in-vitro silicon and gelatin phantoms)
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Table 1 System-level comparison with SOTA untethered microrobot ultrasound tracking works

Reference Imaging
mode

Tracking
method

Imaging
environment

Dimension/
Tracking

distance (mm)

Tracking
accuracy

(mm)
Oliveria

et. al [13]
2D B-mode

imaging
Learning

based
Non-tissue (water)

environment
2D tracking/

40-60 1.59

Yang
et. al [8]

2D B-mode
imaging

Non-learning
based

In-vitro
silicon phantom
of human artery

3D tracking/
400-500

Not
provided

Pane
et. al [11]

Ultrasound
RF data

Non-learning
based

In-vitro silicon
phantom of a
medium artery

2D tracking/
80 0.368

Lu
et. al [10]

2D B-mode
and Doppler

imaging

Non-learning
based

Non-tissue (water)
environment

2.5D tracking/
170 8.12

Du
et. al [9]

2D B-mode
imaging

Non-learning
based

In-vitro gelatin
phantom

3D tracking/
Over 2000

Not
provided

This
work

2D B-mode
imaging

Learning
based

Ex-vivo tissue
environment

with air

3D tracking/
Over 900 1.46

instead of in more complex, heterogenous, tissue environments. One notable approach
[11] utilized the radio-frequency (RF) data and US-acoustic phase analysis (APA)
detection technique in a closed-loop visual-servoing system and demonstrated high
tracking accuracy of a microrobot in sub-millimeter in a tissue-mimicking phantom.
However, this method can only track 2D position of the microrobot without considering
the out-of-plane motion and was not able to provide an automatic detection of the
capsule in the search mode.

Therefore, robust long-distance 3D tracking in tissue environments where loss-of-
view of the capsule robot is common, remains an open challenge. To fill the research
gap, we propose an automatic robotic ultrasound tracking system, as shown in Figure
1. Our contributions include: (1) Our proposed tracking approach is the first to provide
fully automatic detection, long-distance accurate 3D tracking, and search of capsule
robots using 2D B-mode imaging in a physiologically representative tissue environ-
ment; (2) leveraging the approach of large language models (LLM) and proposing a
hybrid CNN and transformer-combined deep learning method for automatic detection
(capsule detected or lost) and localizing the centroid position of capsule robots in ex-
vivo porcine GI tract with intraluminal gas; (3) enhancing the US-guided 3D tracking
performance using conventional B-mode imaging in a clinically representative imag-
ing environment to reduce the gap between the tracking approach validated in the lab
environment and real clinical applications as summarized in Table 1.

2 Results

2.1 System Overview and Experimental Setup
The proposed robotic ultrasound tracking system and the control scheme for mobile
2D US-enabled 3D tracking of capsule robots are shown in Figure 1. The linear array
transducer (L15-7H40-A5) is attached to the 7-DOF robot arm (Franka Emika) via a
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fixture for stably fastening the probe to the robot arm end-effector and is positioned
to image the capsule from the side of the tank. Two computers work in parallel, in
which the client computer is connected to the US system (Telemed ArtUs EXT-1H)
which accesses raw B-mode frames in real time with a frequency of 40 Hz and runs
the tracking algorithm to provide in-plane position and state estimations (capsule
detected or lost) of the capsule robot. The tracked information is sent to the server
computer as feedback for actuating the robot arm to perform a 2-DOF translational
motion along the x and z -axis of the global coordinate frame G via the bilateral User
Datagram Protocol (UDP). The US system operates in the standard B-mode imaging
with an imaging depth and frequency of 70 mm and 7.5 MHz, respectively, which are
appropriate settings in clinical abdominal US imaging [12]. The rod used to connect
the capsule is a low-stiffness Nitinol rod with a length of 50 cm and a diameter of 0.5
mm. One end of the rod is attached to the linear stage that generates the 3D motions,
while the other end is attached to the capsule. We assume the out-of-plane orientation
is negligible.

The anatomically-representative imaging setup (Figure 1(a)) was constructed by
placing a porcine colon tissue sample inside of an agar gel block, which was placed in a
50 cm(L)×15 cm(W )×15 cm(H) acrylic tank. The channel with a length a = 40 cm,
width b = 30 mm, and depth of 50 mm was designed to ensure that the capsule moves
within the valid imaging depth range of 60-80 mm with sufficient space for out-of-plane
motions. To replicate clinical GI ultrasonography, we used an anechoic non-absorbable
polyethylene glycol (PEG) solution mixed with digestive enzymes powder (Webber
Naturals) to fill the channel-like workspace. Two outlets of the air pump were placed
inside the workspace to produce the simulated intraluminal gas continuously. The
acrylic cover has a length of 45 cm and a 1.5 mm wide slot to provide space for the
rod to move, which was used to facilitate trapping large air pockets. The capsule
with a diameter of 8 mm and length of 21 mm consists of three permanent magnets
encapsulated in a plastic sample chamber.

2.2 Ex-vivo Long-distance 3D Tracking of the Capsule Robot
with Air

We demonstrated the 3D tracking in a section of the porcine colon that exhibits
alternating echogenicity in B-mode images due to the layered structure of the colon
wall and the presence of air-fluid interfaces.

First, we demonstrated the in-plane long-distance tracking where the capsule was
maneuvered to move along the channel without any out-of-plane motion. The total
tracking distance was around 90 cm with 1339 tracking frames. The proposed sys-
tem detected and localized the capsule in all frames with a 0.31 ± 0.25 mm which
corresponds to 1.5% of the capsule’s body length. The tracked positions with the US
frames at three different locations in the workspace and the centroid tracking error
distribution are shown in Figure 2(a) and (b), respectively.

Second, we conducted ex-vivo 3D tracking to replicate the capsule operations in
real clinical procedures. In the first trial, the capsule traveled for a round-trip in the
workspace with air and several random motions at different locations, which caused the
view loss. The tracking system detected it as lost and switched to the searching mode.
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Fig. 2 Ex-vivo real-time 3D tracking of the capsule robot in porcine colons. (a) shows the tracked
positions with US frames at three different locations during the long-distance in-plane tracking with
the centroid position error distribution in (b). (c) and (d) plot the in-plane tracking error and the
robot arm position perpendicular to the image plane in the first trial of the 3D tracking experiments,
respectively. The slopes in the figure represent the search process, during which the capsule becomes
misaligned with the image plane, resulting in view-loss. The horizontal segments depict the tracking
process, where the image plane aligns with the capsule, corresponding to the capsule’s out-of-plane
positions along the z-axis. (e) demonstrates the comparison of the retrained ResVit model (denoted
by red frames) with non-retrained ResVit (green) and the ResNet with channel attention (blue) for
tracking the capsule in ex-vivo porcine colon in three sample test images (denoted by the boxes
with dotted lines in different colors) with different air-related artefacts (purple), the capsule in close
proximity to the tissue boundary (pink) and is obscured due to clusters of air bubbles, and is occluded
by the large air pocket (green). The retrained ResVit mode can provide accurate tracking in all the
scenarios while the other two models either provide biased localization or fail to detect the capsule.

Once the capsule was detected and the tracking was resumed, the system switched
back to the tracking mode automatically. The mean centroid estimation error of in-
plane tracking is 1.46±0.86 mm, which corresponds to 6.9% of the capsule body length.
The robot arm position along z -axis with working mode switches and the in-plane
tracking error in each frame are plotted in Figure 2(c) and Figure 2(d), respectively.

Last, we assessed the 3D tracking of the capsule with an initial search without a-
priori knowledge of the capsule state. To test the robustness and searching capability
of the proposed tracking method, the capsule moved randomly perpendicular to the
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image plane at the air region, where the pump speed was increased to generate a higher
concentration of air bubbles to simulate the conditions of air-intensive regions in the
GI tract. The system demonstrated prolonged and reliable detection and tracking, as
shown in Figure 2(e).

The initial search involved 100–200 frames during which the capsule was not within
the field of view of the ultrasound probe. The neural network model demonstrated
robustness against imaging artifacts and noise, achieving 100% detection accuracy
once the capsule appeared. Similar to the relocalization scenario, the capsule was occa-
sionally lost due to out-of-plane motion. Relocalization was performed automatically
by the robot and also achieved 100% detection accuracy. These results highlight the
robustness and reliability of the proposed robotic tracking system.

Besides these results, we demonstrated the 3D tracking experiment in the
workspace with a more complex profile, in which the channel-like workspace was
designed with two curved sections, each having a diameter of 3.5 cm and lengths of 8
cm and 16 cm, respectively to simulate the curves of colons. The imaging depth was
adjusted from 70mm to 80mm, as the curve made the depth deeper. The proposed
system was able to track the capsule accurately and was robust to the varying imag-
ing conditions. Furthermore, the model was robust and detected the capsule as lost
when encountering the lack of acoustic windows. The searching continued until acous-
tic windows came back. The complete tracking trials can be found in the supporting
videos.

We also conducted both the deep learning-based model-level (Supplementary Mate-
rials) and system-level comparison (Table 1) of the proposed tracking system with
state-of-the-art works on automatic ultrasound tracking of untethered microrobots.
The results in Supplementary Materials suggest that best performance is attained
by the fine-tuned ResVit model (adopted in this work) by a large margin over the
two other baseline models: ResNet-50 with channel attention and the non-fine-tuned
ResVit model..

3 Automatic Robotic Ultrasound 3D Tracking Using
Mobile 2D Ultrasound

3.1 Transformer-based Deep Learning Method for In-Plane
Tracking of Capsule Robot

Convolutional neural networks (CNN) have been successfully used in detection and
tracking of needles, catheters [7, 13] and microrobots in US images [14]. CNN has
natural inductive bias and translation invariance for learning local features in images,
while having difficulty capturing contextual information [15]. The attention mechanism
built in the transformer [16] provides a global receptive field and enables the model to
capture long-range relationships more efficiently. Transformers are also more robust
to common corruptions and perturbations, such as noise, occlusions, and contrast
variation [17]. Therefore, we integrate CNN with transformer and propose a hybrid
network that has the capability for handling with feature misalignment and occlusion
issues.
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Fig. 3 (a) The workflow of the proposed transformer-based robotic ultrasound 3D tracking of the
capsule. (b) The hybrid ResNet and Vision Transformer (ResViT) deep neural networks model for
state detection and centroid localization of the capsule robot.

3.1.1 Network Architecture

In this work, a hybrid ResNet [18] and Vision Transformer [19] (ResViT)-based deep
learning method is proposed to detect the capsule robot state (detected or lost) and
track the capsule in-plane position via centroid detection. The ResViT model (Figure
3(b)) consists of a pre-trained ResNet-50 backbone for extracting low-level features,
a transformer encoder to facilitate long-range spatial dependencies across the entire
image locations, and an output head to predict either the centroid pixel coordinates
(xU

c , y
U
c ) in the US image or the capsule state as detected or lost.

Given an input image I ∈ RHI×WI×CI , the CNN feature extraction compo-
nent outputs a 2D spatial feature map F ∈ RHF×WF×CF . A 1 × 1 convolutional
layer is applied to transform the CNN feature map to F ∈ RHF×WF×DF , in which
DF = 64 is the constant latent vector size used in the transformer encoder through
all its layers. Then the transformed feature map is flattened into a sequence of
patch embeddings Epatch with a trainable linear projection [Fp1E; Fp2E; . . . ; FpNE]
where Fpi denotes the ith image patch in the feature map F and E ∈ R(HF ·WF )×DF

is the linear projection layer. To retain each position of the patch embeddings in
the feature map, the 1D learnable position embedding is applied to obtain position
embeddings Eposition ∈ R(HF ·WF )×DF , which are added to the patch embeddings
[Fp1E; Fp2E; . . . ; FpNE] + Eposition.The resulting embedding sequence is the input
to the transformer encoder with N = 4 encoder layers, in which each encoder layer
consists of a multi-head self-attention sub-layer, a fully-connected (FC) sub-layer with
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a GELU activation function, a residual connection around each of the two sub-layers
followed by layer normalization. The self-attention mechanism allows each position in
the encoder layer to attend all other locations in the input sequence by computing the
attention scores Attention(Q,K, V ) = softmax(Q·KT

√
dk

) · V is used to determine con-
tributions of different image locations for making the prediction, where Q, K, V are
the query, key, and value matrices obtained by mapping the input sequence through a
linear layer with weights Wq, Wk, and Wv. Multi-block of self-attention modules are
concatenated for paying attention to different regions of the image. We used a multi-
head of self-attention layer with 4 hidden blocks. A feed-forward layer that predicts
the centroid position coordinates is attached to the transformer encoder with an out-
put (HF · WF ) × DF in the centroid estimation model, while a classification output
head with 2 classes is attached to the encoder in the state detection model.

3.1.2 Model Training and Fine-tuning

We used a custom ex-vivo dataset [20] that was generated in ex-vivo porcine stomachs
with a different capsule robot [21] in our earlier work for training the ResVit model.
Details of data collection and generation can be found in [20]. During training, we
split the two training datasets into train, validation, and test set with a ratio of 7:2:1.
Two models were trained separately for the capsule state classification and centroid
position estimation. To further enhance the tracking accuracy and robustness of the
deep neural network models with the existence of unseen artefact patterns in the
original training data, the trained model was fine-tuned using a small-scale ex-vivo
porcine colon dataset with a size of 5200 B-mode images that includes air-related
artefacts and mirror artefacts caused by the bouncing of acoustic waves within the
hollow cavity of the new capsule.

The real-time US image frames are processed on a GPU (NVIDIA GeForce RTX
2070). The system’s processing speed is evaluated by calculating the neural model’s
processing time per frame (input to prediction), which is equivalently 9-12 fps. The
latency of the data transmission between the robot arm controller and the US system
is negligible compared to the model processing time.

3.2 Robotic 3D Tracking Strategy
As shown in Figure 3, the tracking process starts with an automatic initial search
without any a-priori knowledge of the capsule position and state. The capsule moves
in the workspace with an average in-plane speed of 1 mm/s by manually maneuvering
the 3-DOF stage along and perpendicular to the lateral direction of the agar tank.
The system operates in two working states: a) tracking state, b) search and recovery
tracking state. The state detection model first detects the capsule, if the capsule
is detected, the in-plane centroid detection model then provides real-time centroid
localization, which is transformed to the workspace coordinate frame G and used for
actuating the robot arm with the controller showed in Eq. (1) to align the image plane
with the capsule for real-time tracking. The search and recovery tracking state allows
for the mobility of the US probe to scan the workspace orthogonal to the image plane
and thus adjusting the image plane to coincide with the capsule. Once the tracking
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is recovered and the capsule is detected for consecutive n frames, the working state
automatically switches back to the tracking state. The initial search at the start of
the tracking is performed manually. An operator holds the robotic US probe to scan
the workspace until the model outputs a prediction on the capsule’s position. The
average time in this procedure is around 40 seconds. Re-localization if the capsule is
lost during tracking is performed automatically by the robotic arm, with an average
re-localization search time of 1.5 minutes.

The robot arm is controlled to perform searching within the range of [−30, +40]
mm along the z -axis of the workspace. The capsule’s centroid position (xU

c , y
U
c ) in the

US image pixel coordinate frame U is transformed to the global coordinate frame G
and used to calculate the robot velocity:

ẋG
c =

{
sα(xU

c − xU
m), if żGc = 0

0, if żGc > 0

ẏGc = 0

żGc =

{
sgn(δt)v, if OutPlaneCnt> n

0, otherwise

(1)

where s is the scale factor from the US image pixel to mm, α is a control parameter
for controlling the in-plane motion of the robot arm. xU

m is the X coordinate of the
US image’s geometrical centroid point. v is a preset value for controlling the robot

upward/downward. sgn(δt) =

{
1, δt < tc

−1, δt ≥ tc
, δt is the robot’s motion accumulated

time at each up/down searching loop. tc is a preset value for changing the robot’s
moving direction. We assume that the side wall of the tank is parallel to the XZ plane
of the global frame, such that the robot is motionless in the Y direction.

4 Discussion and Conclusion
This paper proposes a hybrid CNN and transformer-based automatic robotic ultra-
sound system for long-distance US-guided 3D tracking of capsule robots in tissue
environments using 2D B-mode imaging. Experimental results manifest that the pro-
posed method can automatically detect the existence of the capsule and reliably track
the capsule for over 90 cm while addressing view-loss of the capsule and recovering
tracking of the lost capsule in 3D space. Our work focuses on robotic capsule applica-
tions for microbial sampling within the GI tract, which do not necessarily demand very
high localization accuracy for the robotic agents. However, from a control perspective,
it is desirable for the robot to be controlled with motion accuracy on the order of sev-
eral millimeters. The proposed system provides a fully automatic detection, tracking,
and search of capsule robots, which largely reduces the workload of physicians. Fur-
thermore, the attention mechanism of the transformer allows for capturing long-range
dependencies across the image and localizing the occluded and obscured capsule. The
fine-tuned ResVit model achieves high detection and localization accuracies on both
unseen test data and new imaging scenarios with varying imaging parameters through
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a small-scale fine-tuning. In our future work, we will improve the scanning mechanism
to accommodate external pressures exerted by the probe when it is pushed against
the tissues during imaging. We will also validate our system in in-vivo environment
of both live animals and human that can account for acoustic properties of interior
fluids and tissue contractions.
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