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Abstract—Various design modifications have been proposed
for tendon-driven continuum robots to improve their stiffness
and workspace. One of them is using locking mechanisms to
constrain the lengths of rods or passive backbones along the
robot. However, physics-based models used to predict these
robots’ behaviour commonly assume that the curvature of the
locked portion does not change during robot actuation or that
the effects of friction and gravity are negligible. In addition,
these models do not consider the variations in twist on force
application. In this letter, we propose a 3D static model for
tendon-driven continuum robots experiencing locking due to
length constraints on rods along their backbone. The proposed
model is evaluated on prototypes of length 240 mm, with up
to three locking mechanisms and has an accuracy of 3.63%
w.r.t. length. Using the proposed model, a compliance analysis is
performed studying the evolution of the robot compliance with
the position of the locking mechanisms. An actuation strategy
is proposed that can allow the robot to achieve the same shape
with different compliance.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Flexible Robotics, Kinematics.

I. INTRODUCTION

TYPICAL tendon-driven continuum robots (TDCRs) are
faced with two major issues due to being compliant and

under-actuated: (1) they may lack the stiffness required to
perform tasks requiring large force transmissions at their tip
and (2) they cannot easily achieve multiple curvatures as they
are underactuated, and have limited controllable degrees of
freedom.

There have been various approaches to improve the robot
stiffness, like granular [1], scale [2], and layer jamming
[3], [4]. Stiffening by controlling tendon [5] and pneumatic
actuators [6] is another example, where higher tension or
pressure is applied on all actuators to increase stiffness. A
curvature restraining rod has also been proposed [7] that can be
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Fig. 1. Sequence of locking motion shown, with the multiple curvatures

inserted and retracted to vary the robot stiffness. Increasing the
controllable degrees of freedom is generally achieved either by
adding additional segments or by introducing length extension
and retraction in a segment. Varying the tendon routing along
the backbone [8]–[10] has been shown to change continuum
robots’ curvature and stiffness properties. Another approach to
enable multiple curvatures is by changing the robot stiffness
by introducing high friction material [11] to limit the motion
between two sliding backbones in a tip-growing robot.

A promising approach to improving the stiffness while
adding additional degrees of freedom in the literature is
to use the principle of locking. Locking limits backbone
motion as it prevents relative motion between some of the
robot components using friction or mechanical principles. The
working principle involves having these mechanisms along the
robot, clutching or latching on to passive backbone elements,
constraining portions of their length. These length constraints
result in increased stiffness, and enable multiple curvatures
along the backbone and corresponding increase in its degrees
of freedom. Compared to the previous methods, locking mech-
anisms have the advantage of being modular and compact, as
they are relatively smaller compared to the robot itself. They
can be designed at the millimeter scale, with central channels
to pass cables and tools.

A general TDCR design with locking mechanisms that
clutch on to additional passive backbones is shown in Fig. 1.
These passive backbones run parallel to the primary backbone,
with tendons used to actuate the backbone itself. When two
locking mechanisms are actuated, the length of the portion
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Fig. 2. Sequence of locking motion shown, for m = 3 for a planar case. The notation De denotes the indices of disks whose locking mechanisms are engaged
and in locked state while ze denotes the state after a tension τ e is applied. Starting straight configuration with disk i locked, the robot bent on application
of τ1 resulting in state z1 = (D1, τ1). Disk j is then locked as well, constraining the backbones. Tension τ2 results in z2 and the state z2 = (D2, τ2).
Next, disk k is locked as well and τ3 applied, resulting in z3 = (D3, τ3).

of the passive backbones between the two mechanisms is
constrained. This length-constraint increases the stiffness of
the locked portion while allowing the rest of the robot to bend
according to tendon actuation.

The locking mechanisms themselves can use a variety
of actuation methods. For example, shape-memory alloys
(SMAs) have been used to actuate these locking mechanisms
to clutch on to rods [12] and cables [13]. Similarly, in our
prior work [14], a magnetically-actuated mechanical lock was
proposed to clutch on to passive backbones along the robot.
In an alternative application, these locking mechanisms have
been used to create interlaced robots that can achieve follow-
the-leader deployment. Piezoelectric [15] and parallel-link
mechanisms [16] in a robot have been used to clutch on to
rods and retain the robot’s shape, while another interlaced
concentric robot follows the shape.

Modeling the impact of length-based constraints on the
robot behaviour is an essential step towards formulating TDCR
design, control, and motion planning paradigms. However,
existing models typically assume that the segment bends as
a constant curvature (CC) arc, which entails certain limiting
assumptions. For example, the model proposed by Bishop
et al. [13] assumes that the backbone curvature does not
vary once locked. Wang et al. [17] account for this variation
by considering moment coupling between the locked and
unlocked portion. Additionally, both these approaches assume
that the effect of frictional and gravitational forces is negligible
to keep the CC assumption valid. A static model is proposed
by Yang et al. [12] that accounts for these forces by assum-
ing a piecewise-constant curvature (PCC) model, where the
backbone is represented as a series of constant curvature arcs.
However, all the above models assume that the twist in the
backbone is negligible and do not account for 3D deformations
due to external forces.

In addition to a general static model that can model 3D
deformations, there is a need to study the variation in robot
properties due to the introduction of locking mechanisms. In
particular, there has been no study evaluating the stiffness
variation of TDCRs based on the position of these locking

mechanisms. Furthermore, most works restrict their study to
enabling two curvatures in a single segment.

In this letter, we propose a length constraint approach to
model the locked behaviour of these robots. The locked robot
portion is modeled by assuming that the length constraints
result in an additional internal moment that varies based on
the forces acting on the robot. We implement this constraint
by using the PCC assumption to model the backbone. The
contributions of our letter are as follows. First, we propose
a general 3D static model for TDCRs that takes into account
the length constraints of locked portions, along with backbone
twist, frictional, and gravitational forces. Second, we present
a compliance analysis for these locking mechanisms to study
the influence of locking mechanism placement on the robot’s
stiffness. Finally, we propose an actuation strategy using three
or more locking mechanisms that can be used to achieve the
same shape, but with different stiffness properties.

II. WORKING PRINCIPLE

To model the behaviour of a TDCR experiencing locking,
we consider a single segment TDCR actuated by three tendons,
routed through n disks with a radius of rd placed equidistantly
along the central backbone. Three passive backbones are
assumed to be at a distance of rbb to the central backbone in
all configurations, also arranged equidistant w.r.t each other.
The tendons can have different tensions applied to them which
result in different shapes. We illustrate an example TDCR in
Fig. 2 as we explain the working principle in the following.

In order to lock any portion of the robot, there needs to
be a minimum of two locking mechanisms on the robot. If
m is the number of locking mechanisms on the robot, then
m ∈ [2, n + 1] ∈ W, since in addition to being placed on
the n disks another could also be placed on the base disk.
When two locking mechanisms at disks p and q are locked,
the length of the secondary backbones between disks p and q
is constrained. This locked portion has higher stiffness and can
therefore, be used to obtain multiple curvatures when different
tendon tensions are applied as shown in Fig. 2.
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The shape of the robot depends on the sequence in which
the following actions are performed: a) engaging the locking
mechanisms and b) changing the tensions applied on the
tendons. Let the sequence in which the above steps are
performed be denoted by Z = {z1, z2...zT }. For any element
e, ze = (De, τ e), where De denotes the set of indices of
mechanisms which are locked and the vector τ e denotes the
vector of tendon tensions applied post locking. If the notation
card(De) denotes the cardinality or size of De, the number
of locked portions can be calculated by d = card(De)− 1. If
the size of De is less than 2, no portion is locked as you need
at least two locking mechanisms to lock the backbones. From
a design perspective, we assume that one locking mechanism
is always actuated to prevent the secondary backbones from
sliding off.

If mechanisms on disks i, j, and k are locked, De is denoted
as {i, j, k}, where i < j < k, and the portions between i and
j, and between j and k is locked. For example, consider the
robot with m = 3 locking mechanisms placed at disks {i, j, k}
depicted in Fig. 2. First, mechanism at i is locked and a tension
τ 1 is applied. Next, the mechanism at j is locked and a tension
of τ 2 is applied. Finally, the mechanism at k is also locked
and the tension τ 3 is applied.

III. ROBOT REPRESENTATION

In this section we detail the backbone parameterization
using the PCC assumption. We follow the nomenclature and
methods defined in [18]. We assume that the backbones do
not experience elongation or shear as it is negligible compared
to their bending. We consider the model of a single segment
robot i.e. there is only one set of tendons actuating the robot,
terminating on the last disk. The entire segment is divided
further into subsegments, each subsegment j consisting of the
portion of the central backbone between disks j − 1 and j,
including the disk j.

A. Backbone kinematic representation

The point Oj−1 describes the center of disk j − 1 and
represents the base of subsegment j. There is a local frame of
reference attached to each disk, with the x-axis of this local
frame pointed towards the location of the tendon marked 1,
and the local z-axis tangent to the backbone. The tendons and
passive backbones are numbered in an anti-clockwise manner
as shown in Fig. 3. The segment of length l is divided equally
between the n subsegments, each of length lj = l/n.

We assume that the portion of the backbone in each sub-
segment bends as a circular arc, following the piece-wise
constant-curvature assumption [19], [20]. The configuration
parameters of the entire segment can then be represented
by the parameters, Xµ,j = [κx,j , κy,j , εj ]

T for j = 1, 2..n,
where κx,j and κy,j represent the components of bending
curvature along the x and y axis, and εj represents the
torsional component of curvature. Therefore, 3n parameters
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Fig. 3. (a) Diagrammatic representation of the forces acting on the robot
marked in red and coordinate axes in orange. (b) Cross section of the disk
showing the anti-clockwise numbering of tendons and backbones. The passive
backbones are placed at a radius of rbb, marked in green, while the tendons
are placed at a radius of rd, marked in black.

are required to represent the entire backbone. The resulting
bending curvature, κj and plane of bending, φj is given by

κj =
√
κ2x,j + κ2y,j (1)

φj = atan2 (κy,j , κx,j) (2)

In a subsegment j with a base at Oj−1 and associated refer-
ence frame, the coordinates of the end-point of the backbone
coincide with the center of the next disk at Oj . A point on
the central backbone at an arc length of s, defined w.r.t. the
frame of reference of disk j − 1 is given by

pj−1j (s) =


cosφj

κj
(1− cos(κjs))

sinφj

κj
(1− cos(κjs))
1
κj
sin(κjs)

 . (3)

The transformation between reference frames j − 1 and j
is given by

Tj−1
j =

[
Rz(φj)Ry(κj lj)Rz(εj lj − φj) pj−1j (lj)

0 1

]
(4)

where Rz and Ry represent rotations about the local z and
y axis respectively. The transformation matrix between the
reference frames of two subsegments is given by sequentially
multiplying the corresponding transformation matrices of all
disks between the frames of interest.

B. Disk constraints on tendons and passive backbones

The tendons are arranged at angles [ψt,1, ψt,2, ψt,3] and
the passive backbones at angles [ψb,1, ψb,2, ψb,3] as shown in
Fig. 3. The tendons are assumed to be partially constrained
and the coordinates of tendon k intersecting at disk j, w.r.t.
frame j is calculated by

pjt,(j,k) = rd
[
cos (ψt,k) sin (ψt,k) 0

]>
(5)

The coordinates of the passive backbone k can be obtained
from (5) by substituting ψt,k with ψb,k, and rd with rbb.
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C. Coordinates of points along passive backbones

Since we consider that the length of the locked portion of
the passive backbones, consisting of multiple subsegments,
remains constant, we need to calculate their length within
a subsegment. To do so while considering their experienced
twist, we approximate a continuous secondary backbone by
a series of w intermediate points. Since we assume that a
subsegment has constant torsional curvature, the twist angle
at an arc length of s ∈ [0, lj ] in the subsegment is given by
εjs. Using equations (3), (4) and (5), the corresponding point
lying on backbone k w.r.t. the frame j − 1 is given by

pj−1b,(j,k)(s) =

[
Rj−1(s) pj−1j (s)

0 1

] [
pjb,(j,k)

1

]
(6)

Rj−1(s) = Rz(φj)Ry(κjs)Rz (εjs− φj) (7)

The coordinates of the w points can be obtained by equating
s = (m/w)lj , where m = 1, 2...w.

IV. STATIC MODEL

We consider a tension τk applied at the tendon k to actuate
the robot. The static model involves finding the mapping from
these applied tensions to the resulting position and orientation
of the entire backbone. We assume that the tendons follow a
partially constrained path, defined in [18], where the portion
of the tendon between consecutive disks is considered to be
a straight line. The force equilibrium equations have been
adapted from the model written for a standard TDCR design,
proposed in [20]. While the above methods have been used
to model the unlocked robot, we introduce additional length
constraints on the portion of the locked passive backbones
to model the robot in the locked state. Once the force and
moment equilibrium equations are written for each subseg-
ment, the Hooke’s law is used to find the resulting constitutive
equations. The backbone is assumed to be inextensible, and
its weight negligible compared to the weight of the disks.

A. Forces and moments

The tendon interaction forces, described in [18] in each
subsegment j due to the kth tendon is denoted by Fj−1j,k ,
and the resulting moment by Mj−1

j,k . In addition, there are
external and gravitational forces acting on the subsegment with
resultant moments. Both these forces must be defined w.r.t. the
local frame of reference as

Fj−1g =
(
T0
j−1
)−1 [

0 0 −mdisk,jg 0
]>

(8)

Fj−1ext =
(
T0
j−1
)−1

Fext,j , (9)

where g is the acceleration due to gravity, Fext,j is the external
force applied to disk j, if any, expressed w.r.t. the global frame
of reference. The mass of disk j is denoted by mdisk,j and
includes the additional mass of the locking mechanism, if any.
If there is no external force applied to that subsegment, the
magnitude of Fext is set to zero.

Using the equilibrium equations described above and equat-
ing them as done in [18], the net force and moment in a
subsegment, Fj−1j and Mj−1

j can be calculated.

Using the constant curvature assumption for each subseg-
ment and Hooke’s law, the resulting moment due to bending
of the central and passive backbones is given by

Mj
elastic = R(φ, θj)


0

E(Icκj +
∑3
k=1 Ibκj,k)

G(Jc +
∑3
k=1 Jb)εj

0

 (10)

R(φ, θj) = Rz(φ)Ry(θj) (11)

κj,k =
κj

1− κjrdcos(ψb,k − φj)
(12)

where Ic, Ib, Jc, and Jb are the second moment of area,
and polar second moment of area of the central and passive
backbones respectively. Assuming that the central and passive
backbones are made of the same material, E and G are the
Young’s and Shear modulus respectively.

B. Constitutive equations

In addition to the internal moments generated, we assume
that each locked portion of the backbones experiences a
corresponding internal moment due to the locked state. For
a configuration represented by ze = (De, τ e), if the set De
consists of d elements, then d unknown internal moments,
Mint,i, ∀i = 0, 1, ..d are considered to be acting on the
subsegments in the locked region.

The function g(j) indicates whether the subsegment j is
locked or not.

g(j) =

{
1 if locked
0 else.

(13)

The net internal moment on subsegment j can then be calcu-
lated by summing the moments given in (10) and the sum of
internal moments resulting from being a part of any of the d
locked portions. Transforming the latter to the local frame, the
net moment is given by

Mj−1
j = Mj

elastic + g(j)Tj−1
j Mj

int,i (14)

At equilibrium, the internal moment must be equal to the
net moments resulting from force interactions on the robot.
Therefore, there are 3n equilibrium equations due to moment
balance at all n subsegments.

C. Passive backbone length constraints

We can obtain 3d additional constraint equations by con-
sidering the fixed lengths of the three passive backbones. For
any locked portion i between disks p and q, the length of the
secondary backbones between them, where p < q can then be
calculated using (6) as

`p,qk =

q∑
j=p+1

w∑
m=1

∥∥∥∥pj−1b,(j)

(
mlj
w

)
− pj−1b,(j)

(
m+ 1

w
lj

)∥∥∥∥
(15)

where ||.|| represents the Euclidean norm. For ease of notation,
the subscript k is removed from the above equation. If the
locked portion between p and q represents the ith locked
portion out of d locked portions, `i is the vector representing
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the lengths of the passive backbones in it. Once locked, these
lengths must remain the same when the robot is bent to another
shape by applying a different set of tensions. This constraint
can be expressed as

`i − `∗i = 0,∀i = 0, 1, 2, ..d (16)

where `∗i denotes the backbone lengths of the locked portion
predicted by the model after the tendon tensions are changed.

D. Discussion

In the locked state, the system now has 3n+3d equilibrium
equations from the moment balance of internal and applied
moments. There are also 3n + 3d unknown parameters, con-
sisting of the 3n curvature parameters as well as the three
components of d internal moments generated. When there are
no locked portions, the model reduces to that of a general
TDCR with 3n unknowns and 3n constraint equations.

To calculate the final shape at the end of a sequence
Z = {z1, z2, ...zT }, the model needs to be run successively
for each preceeding step. Doing so allows us to 1) calculate
the lengths of the locked portions of the passive backbones,
and 2) use the curvature values as the model’s initial guess to
aid convergence when evaluating the next step. The models
are computed in MATLAB, using the Trust-region-dogleg
algorithm implemented in the fsolve function.

V. EXPERIMENTAL VALIDATION

We investigate the performance of our proposed model for
different locked configurations of a single segment TDCR. We
specifically look at the evaluation of m = 2 and m = 3 locking
mechanisms. The three different case studies considered to
evaluate the model and its results are described first. The
experimental setup and calibration process are then described,
followed by the evaluation.

A. Case studies

Typically, TDCRs with on-board locking mechanisms only
consider two mechanisms placed at the base (disk 0) and
an intermediate disk. We extend the study to two additional
cases as well, considering external tip forces. The robots’ final
shapes in all three cases are used to evaluate the model.

1) Case 1, (m=2): The locking mechanisms are placed at
{0, 8}. First, disk 0 is locked and the robot is bent using a
tension τ 1. Next, the locking mechanism at 8 is locked and
another tension τ 2 is applied. The sequence of locking is given
by Z1 = {({0}, τ 1), ({0, 8}, τ 2)}.

2) Case 2, (m=2): Here, locking mechanisms at {8, 16}
are considered such that the distal portion of the robot
is locked. The sequence of locking is given by Z2 =
{({16}, τ 1), ({8, 16}, τ 2)}.

3) Case 3, (m=3): Three locking mechanisms placed at
{0, 4, 12} are considered. The sequence of locking is given
by Z3 = {({0}, τ 1), ({0, 4}, τ 2) ({0, 4, 12}, τ 3)}.

B. Experimental setup and calibration

To evaluate the three cases in section V-A, two robot
prototypes were developed. Both robots are 240 mm long, are
actuated by three tendons arranged around the robots’ central
backbone at angles of ψt = [0, 2π/3, 4π/3], and have three
passive backbones placed at angles of ψb = [π/3, π, 5π/3].
Both the passive backbones and tendons are equidistant from
the central backbone, with rd = rbb = 4.25mm. The first
robot had locking mechanisms at disks 0, 8, and 16, which
could be selectively locked to achieve cases 1 and 2. The
second robot had locking mechanisms at disks 0, 4, and 12,
and was used for case 3. The locking mechanisms used in these
prototypes used set screws for locking. These set screws were
manually tightened, engaging them with the robots’ passive
backbones. While set screw-based locking mechanisms were
used in this experiment for simplicity, they can be replaced
with any type of locking mechanism, and the model will still
be valid. The two robots were actuated by hanging calibrated
weights on the tendons.

The desired 2- or 3- curvature robot configurations were
achieve by sequentially engaging the robots’ locking mecha-
nisms and applying tension to their tendons as discussed in
section V-A. The locking sequence for case 3 is shown in
Fig. 4. The values of tendon tensions were chosen randomly
between 50-450g calibrated weights, with an additional weight
of 50 g used to pretension all the three tendons.

Once the final shape of the robot was achieved (two
curvatures in cases 1 and 2, and three curvatures in case
3), a coordinate measurement machine with a point probe
(Microscribe G2X, Revware Inc., USA, accuracy of 0.002 ”)
was used to measure the position of every fourth disk on the
robot (Fig. 5). Six points were measured around the edge of
each fourth disk which were used to find the position of the
robot’s backbone at that disk. In addition to evaluating the
robot in free space, we evaluated the performance of the model
for a force acting on the tip at the end of the sequence for
cases 1 and 2. Calibrated weights were hung from the end
disk using a cable, using a random calibrated weight ranging
from 2 g − 5 g. Since the configurations are not restricted

τ 1 τ 2 τ 3Locked

(a) (b) (c)

Locked

Locked

Fig. 4. Locking sequence for a continuum robot with three locking mech-
anisms placed at 0, 4, 12 for Case 3. (a) The locking mechanism at disk 0
is locked and tension τ1 is applied. (b) The locking mechanism at disk 4
is locked and tension τ2 is applied. (c) The locking mechanism at disk 12
is locked and tension τ3 is applied. The sequence of locking is given by
Z3 = {({0}, τ1), ({0, 4}, τ2) ({0, 4, 12}, τ3)}.
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Set screw

TDCR

Point probe

(a) (b)

Fig. 5. (a) Experimental setup showing the Microscribe measuring the
coordinates of a continuum robot’s disks. (b) A zoomed-in image of the
locking mechanism, with set screws used for locking

to the planar case, the applied weight results in nonplanar
deformations with twists.

For the two prototypes, we use a sample of 25 of the 60
readings to optimise for the Young’s modulus of the Nitinol
rods as well as the orientation of the base. The latter is ex-
pressed as rotation of the experimental data about the global x,
y, and z axis. The calibration is posed as a least-squares opti-
mization, minimizing the average Euclidean distance between
observed and predicted tip positions. The optimisation was
solved using the Nelder-Mead Simplex method, implemented
by Matlab’s fminsearch function.

C. Evaluation of proposed models performance

The model is first evaluated for a TDCR operating in
free space. For all three cases, the values of tensions are
varied to result in different 3D configurations. A total of 40
configurations are measured and the performance of the model
on this dataset is tabulated in Table I. The average end-effector
(disk 16) position error is 3.67% (8.8mm) w.r.t. total length.

The model was evaluated with an applied tip force over 20
observations presented in Table II. The average position error
for the end disk is 3.61% w.r.t. length for the 20 observations
(8.7mm). The observed errors in the experiments is consistent
with the average error of 2.67% observed by Gao et al. [21]
for a robot of length 79.2mm when modeled with a general
friction model for TDCRs. The reported error could be further
reduced with a more accurate model of the observed friction,
such as that between the passive backbones and disks, but that
is currently beyond the scope of this letter. We observe that
the errors are higher for case 3 as it has a larger number of
actuation steps, with accumulated manual error at each step.

VI. COMPLIANCE ANALYSIS

The effect of the position and number of locking mecha-
nisms on the stiffness of a single segment TDCR is analysed
in this section. We assume the effect of gravitational and
frictional forces to be negligible in the studies below to study
the behaviour of the locking independent of these factors. We
consider a robot with 16 disks, with three locking mechanisms.
Two of the locking mechanisms are fixed at disks 0 and 16,

whereas the third one is placed on disk d, where the value of
d is varied such that d ∈ [1, 2, ...15].

A. Case Studies

We analyse two configurations achieved through two differ-
ent sequences of locking :
• Configuration 1 (proximal portion locked): Lock-

ing mechanism at disks {0, d} locked with Z1 =
{({0}, τ 1), ({0, d}, τ 2)}.

• Configuration 2 (distal portion locked): Locking
mechanism at disks {d, 16} locked with Z2 =
{({16}, τ 1), ({d, 16}, τ 2)}

When the effects of gravity and friction are considered neg-
ligible, the shape predicted by the model of the two portions is
decoupled. In such a case, a TDCR with n locking mechanisms
behaves as an n-segment TDCR. The workspace, forward,
and inverse kinematics can be obtained from results already
derived for these robots. The more significant difference likely
arises from stiffness properties as length constraints imposed
by the locking change the inernal stiffness. Therefore, in
this section, we study the compliance of the robot using the
definition of compliance manipulability index (CMI) in [22].

The CMI is the volume of the compliance manipulability
ellipsoid, and is the product of the singular values of the
compliance matrix evaluated at the tip of the robot. The
compliance matrix itself is evaluated by measuring the change
in tip pose per unit wrench applied at the tip. The CMI is
always greater or equal to zero. Higher value of CMI indicates
a lower stiffness, and a value 0 denotes infinite stiffness.

If we disregard shapes where the entire backbone is locked,
there are two major design choices that can be made for the
above. One, we can design the system to only be proximally
or distally locked (can only achieve configuration 1 or 2).
In such a case, only one locking mechanism is required and
the backbones can be permanently fixed at either the base or
the end disk (as done in multibackbone robot designs [23]).

TABLE I
ERROR STATISTICS FOR DISKS 8 AND 16, EXPRESSED AS % W.R.T LENGTH

FOR THE THREE CASES OPERATING IN FREE SPACE FOR ROBOTS OF
LENGTH 240mm.

Case 1 (Z1) Case 2 (Z2) Case 3 (Z3)
(15 readings) (15 readings) (10 readings)

Disk 8 16 8 16 8 16
Average 1.75 3.18 2.45 3.01 2.70 5.38
Median 1.83 2.70 2.32 3.23 2.50 3.63

Minimum 0.45 1.19 0.55 0.98 0.76 1.42
Maximum 2.97 5.96 4.05 6.77 4.26 11.08

TABLE II
ERROR STATISTICS FOR DISKS 8 AND 16, EXPRESSED AS % W.R.T LENGTH

FOR CASES 1 AND 2, EXPERIENCING DIFFERENT TIP FORCES OF
MAGNITUDE 2 - 5 G FOR ROBOTS OF LENGTH 240mm.

Case 1 (Z1) Case 2 (Z2)
(10 readings) (10 readings)

Disk 8 16 8 16
Average 3.00 3.22 1.83 3.99
Median 2.87 2.69 1.79 3.76

Minimum 1.41 1.18 0.54 1.92
Maximum 4.58 6.38 3.60 6.67
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Two, the three locking mechanisms can be used as described
above, alternating between proximal and distal section being
locked (can achieve both configuration 1 and 2). Since the first
design choice is a subset of having three locking mechanisms,
we study the second design choice in following subsections.
First, we propose an actuation strategy in subsection VI-B
that can help us leverage the use of three locking mechanisms.
Next, we study the variation in robot stiffness or CMI for both
configurations in subsection VI-C.

B. Actuating all three locking mechanisms: Strategy to obtain
the same robot shape with different compliance

If the secondary backbones are permanently fixed at either
the base or the end disk (as done in multibackbone robot
designs [23]) but with an additional locking mechanism on
an intermediate disk, the robot behaviour can be modeled as
that of either Configuration 1 or 2 respectively. Based on the
Configuration chosen, the robot will have different stiffness.
However, if three locking mechanisms are used (one at the
base, one at the end disk, and one along the robot body) instead
of permanently fixing the backbones, we can leverage their
locking ability to obtain the similar backbone curvatures but
with different stiffness as shown in the following subsection.

The actuation strategy is as follows. We observe that
when the magnitudes of tendon tension are interchanged in
Configuration 2, i.e. τ 2 is first applied, and then τ 1, we
obtain the same backbone curvatures. First, the distal section
gets locked in a curvature resulting from τ 2, and then the
proximal section is bent due to τ 1, resulting in the same
shape as configuration 1 as shown in Fig. 6. The two different
sequences would be Z1 = {({0}, τ 1), ({0, d}, τ 2)} resulting
in configuration 1, and Z2 = {({16}, τ 2), ({d, 16}, τ 1)},
resulting in configuration 2.

This property can be exploited to achieve the same backbone
curvatures but with different stiffness properties. The strategy
can be extended to more than three locking mechanisms by
following the same principle. If the sequence in which tension
is applied is reversed, and the disks are locked in decreasing
magnitude of their index, starting with the end disk, the same
robot shape can be obtained. Theoretically, we could switch
between the two configurations with instantaneous changes in
tendon tensions and locked states of the disks. However, as
mechanical components cannot be instantaneously actuated,
vibration and robot motion are to be expected.

C. Actuating two locking mechanisms: Variation in robot
compliance

This subsection studies the variation in robot compliance
when proximally or distally locked with varying values of the
location d of the third locking mechanism. First, the robot is
bent to a C-shape and then the locking mechanism at disk d
is locked resulting in either the proximal or the distal portion
being locked. Without changing the tendon tension, the robot
compliance is calculated. The value of tendon tension is ap-
proximated as τ 1 = τ 2 = [τ, 0, 0] where τ = π

2lrd
E(Ic+3Ib)

to estimate the tension required to achieve 90 degree bending
of the robot. This value is calculated using the Euler-Bernoulli

(Proximal locked)
Configuration 1

(Distal locked)
Configuration 2

τ 1 τ 2

τ 1 τ 2

τ 2 τ 1

(a) (a) (b)(b)

(c)(c)

(d)(d)

Fig. 6. Strategy to obtain the same backbone curvature through two different
locking sequences, with Configuration 1 (proximal section locked) in green
boxes and Configuration 2 (distal section locked) in purple boxes. From the
straight configuration in (a), the robot is bent by applying a tendon tension of
τ1 for 1 and τ2 for 2, shape (b) is obtained. Once the proximal and distal
section is locked in (c), by applying antagonistic tendon tension, shape (d) is
obtained, with the same backbone curvatures in both sections.

(a)

(b)

Fig. 7. Variation of compliance manipulability index for when the robot is
bent to (a) a C-shape and (b) an S-shape.

beam theory by assuming that the effective flexural rigidity of
the primary and secondary backbones is given by E(Ic+3Ib).
The variation of CMI with the index of the locked disk, d is
plotted in Fig. 7 (a). The overall compliance in both cases
reduces compared to a single segment TDCR with no locked
portion, which has a CMI of 1.36 when bent to a C-shape.
Therefore, we see that the robot is more compliant in the
absence of locking mechanisms.

Next, we study the variation of stiffness when the robot is
bent to an S-shape. We apply the strategy described in the



RAO et al.: MODELING AND ANALYSIS OF TDCRS WITH ROD-BASED LOCKING 9

subsection VI-C, where the values of τ 1 and τ 2 are inter-
changed to achieve the same configuration. For configuration 1
(proximally locked), the value of τ 1 = [τ, 0, 0] is retained, and
τ 2 = 2[0, τ, τ ] to ensure that the S-shaped curve is formed.
The values are interchanged for configuration 2. The observed
CMI are plotted in Fig. 7(b).

We observe that the difference in compliance between prox-
imal and distal portions being locked is not significant when
the length of the locked portion lies approximately between
30− 70%. As the length of the locked portion decreases, the
length of the deforming unlocked portion increases, resulting
in a more compliant robot. The compliance reduces sharply
when the length of the locked portion greater than approxi-
mately 20 − 25% of the entire length. Comparing the robot
compliance between S-shape and C-shape configurations for
given locking disk index, the largest differences are observed
for Case 1 when the index is below 5. This difference is
because the length of the locked portion is smaller than the
free moving portion, which then bends to form an S-shape that
differs widely from the corresponding C-shape. The compli-
ance otherwise doesn’t vary significantly because the resulting
shape is similar in both cases to a C-shape. All the above could
inform the placement of the locking mechanism based on the
stiffness requirements as well as advise design choices when
implementing the strategy proposed in subsection VI-B.

VII. CONCLUSION AND FUTURE WORK

In this work we proposed a static model for a TDCR
with locking mechanisms that can account for variation in
curvature along the backbone while considering frictional and
gravitational forces. The backbone curvature representation
includes twist, which allows for the modeling of 3D deforma-
tions. In addition, we demonstrate that locking can be used
to modulate the robot stiffness without changing its shape
using an appropriate actuation strategy. The design analysis
highlights the variation of robot compliance with placement of
locking mechanisms. Based on the task’s compliance require-
ments, the location and number of locking mechanisms can
be determined. While we assume that the passive backbones
run parallel to the central backbone and do not experience
friction at disks, the modeling can be further improved by
accounting for their buckling and frictional forces. In the
current work, we analyse the performance of the robot for
up to three locking mechanisms. Future work will benefit
from analysing the design choices and consequences of adding
additional mechanisms on the robot properties. The proposed
strategy to achieve different stiffness can inform their motion
planning and will be investigated in future work.
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