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Abstract— Magnetic torsion springs are capable of producing
unique and useful torque-displacement responses that are not
possible with elastic springs. Millimeter-scale magnetically-
actuated robots, which are gaining increasing interest in
biomedical applications, would benefit from the use of magnetic
torsion springs. However, existing magnetic torsion springs are
difficult to fabricate at that scale and can only produce sinusoid-
like responses. Here we show that the magnets embedded in the
links of a robot for actuation purposes can also be leveraged
to produce torsion spring-like behavior. This Simultaneous
Magnetic Actuation and Restoring Torque (SMART) spring
design can enable switching or pop-up behaviour in millimeter-
scale magnetically-actuated mechanisms. A novel analytical
model, validated both numerically and experimentally, is used
to design constant-stiffness and nonlinear bistable SMART
springs. These springs are integrated into a novel 3.5 mm
diameter magnetic robot manipulator.

I. INTRODUCTION

Magnetic fields can penetrate physical barriers to apply
forces and torques wirelessly to magnetic robotic devices in
small confined environments. Magnetic robots show superior
precision, directionality, and control complexity compared to
other small-scale actuation methods, which makes magnetic
devices an attractive engineering solution to a variety of
challenges in biomedical applications and in the area of small
scale mechanisms more broadly [1], [2].

In addition, integrated magnets in robotic devices can
be used to store energy or provide restoring forces in
place of or complementing elastic springs. Energy storage
is crucial for some methods of robot locomotion, and non-
linear restoring torque is necessary for mimicking biological
locomotion patterns [3]. Unlike elastic springs, magnetic
springs experience no fatigue and very little wear, and
they can easily be embedded within mechanism links [4].
Magnetic rectilinear springs have been custom-tailored to
produce nonlinear force-displacement relationships for spe-
cific actuation methods [4], [5]. Variable stiffness magnetic
torsion springs have been designed for human-scale robots
and mechanisms [6], [7], [8], [9] and for energy storage
in centimeter-scale capsule robots [10], [11]. However, all
of these previous magnetic torsion spring designs could
only produce sinusoid-like torque-deflection responses, and
some designs lacked magnetic actuation capabilities due to
their symmetric magnet placement [6], [8], [9]. Furthermore,
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many of these multiple-magnet designs become increasingly
difficult to manufacture on smaller scales.

Magnetic interaction scales powerfully with decreas-
ing distance between magnets, so magnetic springs are
well-suited to small-scale robots. One such application is
millimeter-scale magnetic robot manipulators for tasks in
confined environments. Such robots have been developed
previously with elastic compliant joints composed of thin
Nitinol wires [12], [13]. The restoring torque provided by
the elastic joints allow the gripping and wrist actuation to
be decoupled and controlled independently. However, these
compliant joints have some disadvantages: notably, parasitic
motion (buckling) [14] makes it difficult to predict the
motion of the manipulators or apply directed forces, and
they are limited to a single stable position, which can limit
the available gripping or prying strength. Rigid pin joints
could solve the buckling problem, but they do not provide
the restoring torques that are critical to the control of the
robot. Magnetically-actuated robots already have embedded
magnets in their links for actuation purposes; we propose
that the position and orientation of these magnets can be
tailored to produce unique torque-displacement relationships
that cannot be achieved by previous magnetic spring designs.

This work presents the Simultaneous Magnetic Actuation
and Restoring Torque (SMART) spring design, which allows
highly customizable torque-deflection responses for small-
scale (≤ 5 mm diameter) magnetically-actuated mechanisms.
Here we show how simple two-magnet systems embedded
in the mechanism links can produce unique and useful
torque-displacement relationships in a compact assembly
by integrating these springs into the design of a novel
magnetic robot pictured in Fig. 1. In addition, we show
that a simple point dipole model can model the behavior
of SMART springs with sufficient accuracy to allow rapid
design exploration and iteration without relying on more
computationally-heavy finite element methods.
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Fig. 1. (a) Photograph of the robot designed with magnetic torsion springs
showing the locations and magnetization of the integrated magnets. (b)
Render of the robot CAD model showing its degrees of freedom.



II. ANALYTICAL MODEL

This model will define the geometry of SMART springs,
enable the prediction of their behaviour, and give insights
into how their performance scales with their size. The model
is valid for any mechanism (serial or parallel) with revolute
joints and a single embedded magnet in each link. It assumes
that magnetic interactions between non-adjacent links are
negligible. In addition, the analytical model was formulated
using the point dipole assumption, which assumes that a
volume of magnetic material V with a uniform magnetization
M can be represented by a vector quantitym with magnitude
m = MV located at the center of volume of the material,
which simplifies the equations for magnetic fields, forces,
and torques. The point dipole assumption is valid when
the dimensions of magnetic objects are relatively small
compared to the distances between the magnetic objects
[15]. This assumption may not be valid for some designs,
but it simplifies the geometry sufficiently to allow for rapid
exploration of the design space before refinement of the
SMART spring design with finite element models.

A. Design Parameters of a SMART Spring

The first step in developing an analytical model is to
develop a consistent representation for the geometry of the
SMART spring. Consider a serial mechanism with three
links, each connected with revolute joints, with the first link
(link 0) connected to ground as shown in Fig. 2(a). Magnetic
material in each link causes intermagnetic forces and torques
acting between the links that will vary with the joint angles
θ1 and θ2. Fig. 2(b) depicts a simplified geometry used to
formulate the analytical model of the SMART spring that
accounts for magnetic interaction between two adjacent links
A and B. In this model, a right-handed spring coordinate
system

[
îA, ĵA, k̂A

]
is defined such that k̂A lies along the

rotational axis of the joint and the position of the magnetic
point dipole mA lies along îA. The spring deflection γ is
defined as the angle between the position vectors of the
magnets. The spring coordinate system is defined such that
the conversion from the joint angle of the ith joint θi to its
spring deflection γi is simply θi = γi+βi, where βi is some
constant angular offset.

The positions of the point dipoles are defined as follows:

rA = rA
[
1 0 0

]ᵀ
, (1)

rB = rB
[
cos γ sin γ 0

]ᵀ
. (2)

Where rA and rB are the radial distances from the point
dipoles to the rotational axis of the joint. The point dipole
vectors are defined as follows:

mA = mA

[
cos (ϕA) sin (ϕA) 0

]ᵀ
, (3)

mB = mB

[
cos (γ + ϕB) sin (γ + ϕB) 0

]ᵀ
. (4)

where ϕA and ϕB describe the orientation of the dipoles
relative to the link to which they are fixed, and mA and mB

represent the dipole magnitudes.

B. Behavior of a SMART Spring
The design criteria for a torsion spring can be specified

in terms of its restoring torque τz or stiffness Kγ . In
this section a method for determining these properties for
SMART springs is presented, and a new quantity called the
magnetic sensitivity is introduced.

Analytical expressions for the magnetic force fAB and
torque τAB on a magnetic dipole mB due to another
magnetic dipole mA are readily available elsewhere [15] but
are repeated here for completeness:

τAB =
µ0mAmB

4π‖rAB‖3
m̂B × (3r̂AB r̂

ᵀ
AB − I3) m̂A , (5)

fAB =
3µ0mAmB

4π‖rAB‖4
(

(r̂ᵀABm̂A) m̂B + (r̂ᵀABm̂B) m̂A

+
(
m̂ᵀ
Am̂B − 5 (r̂ᵀABm̂A) (r̂ᵀABm̂B)

)
r̂AB

)
, (6)

where µ0 is the permeability of free space, rAB = rB −
rA, × denotes the vector cross product, ‖a‖ denotes the
magnitude or 2-norm of the vector a, and â = a/‖a‖
denotes a unit vector in the direction of a.

The scalar torque component on link B about the rotational
axis k̂A due to the magnetic force and torque acting on mB

can be determined directly from (5) and (6):

τz = k̂ᵀA (τAB + rB × fAB) . (7)

The angular stiffness Kγ (N·m/rad) can found from the
derivative of τz with respect to γ,

Kγ = −∂τz
∂γ

=
∂2U

∂γ2
. (8)
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Fig. 2. (a) A magnetic serial mechanism with coordinate systems according
to the Denavit-Hartenberg convention. (b) Geometry of a SMART spring
with the design parameters highlighted in red.



Deriving the analytical expression for this derivative may
only be tractable for the simplest cases, such as when rA = 0
or rB = 0. In this work, Kγ was calculated numerically
from the analytical values of τz using a central difference
approximation of the derivative.

If link B is to be actuated via magnetic field, a useful
property is the magnetic sensitivity Sm (rad/T), which is
defined here as

Sm =
mB

Kγ
. (9)

The magnetic sensitivity describes the angular deflection
of link B that results from an applied magnetic field. A
higher magnetic sensitivity indicates that larger deflections
can be achieved with the same magnetic field. However, if
the magnetic sensitivity is too large it may be difficult to
achieve accurate small deflections.

C. Dimensional Analysis and Scaling Laws

The behaviour of the SMART spring, described by τz or
Kγ , is a function of six independent variables. From (5) -
(8) it follows that

τz = fτ (γ, rB , rA + rB , ϕA, ϕB , µ0mAmB) , (10)
Kγ = fK (γ, rB , rA + rB , ϕA, ϕB , µ0mAmB) . (11)

Dimensional analysis using the Buckingham Pi Theorem
allows these equations to be rewritten in a unitless form,
such that

τ̄z =
(rA + rB)3

µ0mAmB
τz = φτ

(
γ, R̄, ϕA, ϕB

)
, (12)

K̄γ =
(rA + rB)3

µ0mAmB
Kz = φK

(
γ, R̄, ϕA, ϕB

)
, (13)

where τ̄z and K̄γ are the normalized torque and stiffness and
R̄ = rB/(rA + rB) is the characteristic length ratio.

The dimensional analysis reveals that the shape of the
torque and stiffness functions with respect to γ depends only
on R̄, ϕA, and ϕB ; therefore, if a specific spring behaviour
is desired, such as specific points of equilibrium or constant
stiffness, it is only necessary to search over these three
dimensionless parameters to find a suitable spring geometry.

Changing the geometric scale of the spring (rA + rB)
or the magnitude of the dipoles (mAmB) in the spring
results only in a vertical scaling of the torque and stiffness
functions. Assuming constant magnetization of the magnets
in the SMART spring, and given an isotropic geometric
scaling factor L such that mA,mB ∝ L3 and rA, rB ∝ L,
it can be seen that τz,Kγ ∝ L3 and Sm ∝ L0. Notably, the
stiffness of an elastic cantilever torsion spring K = EI/l
also scales with L3; therefore, elastic torsion springs and
magnetic torsion springs should be similarly effective as they
are scaled down.

III. SMART SPRING DESIGN EXAMPLE

The goal of this design example was to create a miniature
manipulator with a constant-stiffness wrist spring and a
bistable gripping finger thus demonstrating the useful spring
behaviours that can be accomplished by SMART springs

within a small envelope. The rough shape of the gripping
digits was inspired by the Intuitive Surgical 5 mm bullet
nose dissector attachment for the da Vinci robot. To reduce
the scope of the design process, the magnetic actuation
design of the manipulator was based on a previous single-
digit magnetic gripper design that used elastic spring joints
(“Design B” from [13]).

A. Constraints and Criteria

The robot has two revolute joints (wrist and finger) and
three magnets: m0, m1, and m2 in the base, the wrist,
and the finger, respectively. The wrist magnet m1 serves
as both the distal magnet mB for the wrist spring and as the
proximal magnet mA for the finger spring.

The design is subject to several constraints. First, to prove
the applicability of these magnetic springs to small scale
devices, it was decided that the manipulator must fit through
a 5 mm diameter hole or smaller (less than half the size
of existing magnetic torsion springs). Second, the available
magnetic field generation system is capable of generating
field magnitudes up to 20 mT, so it must be possible to actu-
ate both the gripper and wrist simultaneously with less than
the maximum available field strength. Third, to prove the
simplicity of fabricating these springs, the manipulator must
be built with off-the-shelf magnetic components. Fourth, to
allow for magnetic actuation according to the design from
[13], the orientation of the distal wrist magnet must be
ϕB = 0° and the orientation of the distal finger magnet must
be ϕB ≈ 90°. Finally, in a serial mechanism of this size
it would be difficult to manufacture magnetic springs with
an operating deflection range on the same side of the joint
(−90° < γ < 90°), so the operating deflection range of the
joints is constrained to approximately 90° ≤ γ ≤ 270°. If the
joint angles θ1 and θ2 are defined according to the Denavit-
Hartenberg convention and if the manipulator is to be as
compact as possible, these ranges of the spring deflection γ
result in offset angles β1 = −180° and β2 ≈ −180°.

Friction becomes more significant at smaller size scales;
therefore, the springs should have as high a stiffness as
possible to reduce steady-state positioning errors due to
friction in the joints. In addition, higher manipulator applied
forces (pushing and gripping) are desirable; therefore, the
wrist magnet and finger magnet should have as large a
magnetic moment (volume) as possible.

B. Design Process

The first step in the design process was to choose the
desired shape of the torque curve for each joint; that is, to
choose R̄, ϕA, and ϕB . The wrist joint (joint 0) needed
to have a stable equilibrium at γ = 180° (θ1 = 0°) and
a nearly constant stiffness so that it returns to its resting
joint angle of θ1 = 0° when the actuating magnetic field is
removed. The finger joint (joint 1) needed to have an unstable
equilibrium at approximately γ = 240° (θ1 ≈ 60°) so that it
experiences a bistable transition between open θ2 = 90° and
closed θ2 = 0° positions.



To choose the values of ϕA and ϕB , the points of
equilibrium for a magnetic torsion spring for a given value of
ϕA and ϕB were determined using the analytical model and
plotted against different values of R̄ as shown in Fig. 3(a)
and (b). For the wrist joint, ϕB = 0° was known from the
constraints, but ϕA needed to be determined. After plotting
the equilibrium points for many different values of ϕA, it was
found that the only values that returned stable equilibrium
points at γ = 180° were ϕA = 0° or ϕA = 180°. However,
the range of stability was larger and the linearity was better
for the equilibrium points with ϕA = 180°; therefore, ϕA =
180° was selected for the wrist spring. For the finger joint,
ϕA = 180° and ϕB ≈ 90° were known from the constraints.

The range of acceptable values for R̄ was determined from
Fig. 3(a) and (b) for the wrist and finger joints respectively.
For the wrist joint, 0 ≤ R̄ ≤ 0.2 and 0.8 ≤ R̄ ≤ 1.0 gave
stable equilibrium points at γ = 180°; however, if mB is to
be as large as possible to ensure high applied forces, values
of 0.8 ≤ R̄ ≤ 1.0 would be easier to manufacture. For
the finger joint, the range of acceptable values was more
restrictive: approximately 0.58 ≤ R̄ ≤ 0.62.

Selecting an exact value of R̄ within the range of accept-
able values for the wrist spring required a closer look at the
stiffness behaviour in Fig. 4. A value of R̄ near 0.95 was
chosen because it had the least variation in stiffness over the
operating deflection range. Further tuning resulted in a final
selected value of R̄ = 0.94 for the wrist joint.

To select an exact value of R̄ within the range of accept-
able values for the finger spring, its torque-deflection be-
haviour was examined in Fig. 5. Higher values of R̄ move the
unstable equilibrium point lower and provide higher torque
at the lower limit of the operating deflection range (closed
state) while lower values of R̄ provide higher stiffness at the
unstable equilibrium point and higher torque at the upper
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Fig. 3. Points of equilibrium for (a) the wrist spring ϕA = 180° and
ϕB = 0° and (b) the finger spring ϕA = 180° and ϕB = 90°.

limit of the operating deflection range (open state). A value
of R̄ = 0.59 was chosen because it yielded a reasonable
trade-off between higher stiffness at equilibrium and higher
torque in the closed state.

The remaining three parameters rA + rB , mA, and mB

needed to be selected to determine the magnitude of the
torque, stiffness, and sensitivity for the spring. For the wrist
magnet, a 3.2 mm diameter by 3.2 mm length cylindrical
magnet was chosen for m1 (mB for the wrist and mA for the
finger) to maximize the strength of the robot while satisfying
the size constraint. Choosing the magnitude of m0 and the
distance rA+rB for the wrist spring required manual tuning
to find an acceptable mean magnetic sensitivity (140 rad/T)
and mean stiffness (2.1× 10−4 N.m/rad) over the operating
range. A similar manual tuning process was performed to
choose the magnitude of m2 and the distance rA + rB for
the finger joint, resulting in a magnetic sensitivity of 65 rad/T
and a stiffness of 1.9×10−4 N.m/rad at the equilibrium point.

C. Final Selected Design Parameters

The results of the design process are shown in Table I.
The values given in bold were determined directly from
the design constraints. The manipulator components were
fabricated using a FormLabs Form 2 Desktop SLA 3D printer
with FormLabs Clear v4 resin at a resolution of 25 µm. A
D11-N52 cylindrical magnet (D = 1.6 mm, H = 1.6 mm),
a D22-N52 cylindrical magnet (D = 3.2 mm, H = 3.2 mm),
and three B111 cubic magnets (L = 1.6 mm each) from K&J
Magnetics were used for m0, m1, and m2 respectively. A
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Fig. 4. Normalized (unitless) stiffness versus deflection angle for different
values of R̄ with ϕA = 180° and ϕB = 0°.
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Fig. 5. Normalized (unitless) torque versus deflection angle for different
values of R̄ with ϕA = 180° and ϕB = 90°.



photograph of the robot with arrows indicating the magne-
tization directions of the integrated magnets (magnetized by
the manufacturer) is shown in Fig. 1(a) and the CAD model
of the robot is shown in Fig. 1(b).

Like any design process, designing magnetic torsion
springs is an iterative process that may require returning
to earlier steps after analyzing the design. The choice of
magnetic moment magnitudes was limited by the selection
available from magnet parts suppliers, and the distance
rA + rB was subject to the manufacturing capabilities of
the FormLabs Form 2 printer. In order to accommodate the
gripping surface of the finger, magnet 2 had to be offset from
the center of the gripper by approximately 0.8 mm, which is
why the final design of the finger joint had ϕB = 80.5°.

IV. SMART SPRING MODEL VALIDATION

It was necessary to verify the behavior of the SMART
springs, which may differ from the analytical model due
to the limitations of the dipole assumption. To accomplish
this validation, a magnetic finite element analysis was per-
formed in COMSOL, and experimental measurements of the
restoring torque on a scale model of the finger and wrist
springs were conducted. The FEA results and experimental
measurements are shown in Fig. 8.

A. Finite Element Analysis

A finite element (FE) analysis was performed in COMSOL
to ensure that the SMART springs behaved similarly to
their analytical approximation. Each SMART spring was
simulated individually. The FE model takes the geometry
of the magnets into account, so it should show if the dipole
assumption made in the analytical model fails to accurately
capture the behaviour of the springs. In the simulation for
the wrist spring, the base magnet (magnet 0) was held fixed
while the wrist magnet (magnet 1) was rotated about the
center of rotation in increments of 2° over the operating
deflection range (90° ≤ γ ≤ 270° or equivalently −90° ≤
θ1 ≤ 90°). Similarly, for the finger spring the wrist magnet
(magnet 1) was held fixed while the finger magnet (magnet
2) was rotated about the center of rotation in increments of
2° over the operating deflection range (189.5° ≤ γ ≤ 279.5°
or equivalently 0° ≤ θ2 ≤ 90°). Fig. 6 shows an example
position of the finger spring in the FE model.

TABLE I
SUMMARY OF THE SELECTED DESIGN PARAMETERS.

Parameter Wrist Joint Finger Joint
β -180.0° -189.5°

ϕA (deg) 180.0° 180.0°
ϕB (deg) 0.0° 80.5°
R̄ (–) 0.94 0.59

rA (mm) 0.254 3.302
rB (mm) 3.969 4.849

mA (mA·m2) 3.7 29.6
mB (mA·m2) 29.6 12.6

B. Experimental Validation

The spring torque was measured using an ATI Nano17
Titanium 6-axis force-torque transducer with signals ac-
quired through a National Instruments USB-6210 DAQ. The
experimental apparatus is pictured in Fig. 7. The torque
measurement on link B was performed in a kinematic in-
version: link B (the moving link in the model) was held
fixed to the force transducer while link A (the fixed link
in the model) was rotated around the center of rotation in
increments of 5° through the operating deflection range of
each spring. There was no physical contact between the links
to ensure that the only measured forces were due to magnetic
interaction and not friction or contact forces.

The experiments were performed at 200% scale compared
to the true robot scale to ensure that the magnetic torques
were sufficiently large to be measured by the ATI Nano17T.
Consequently, the measured torques in Fig. 8 were scaled by
a factor of 1/8 to account for the scaling of τz ∝ L3. For
the wrist spring, a D22-N52 magnet and a D44-N52 magnet
from K&J magnetics were used for m0 and m1 at distances
of rA = 0.51 mm and rB = 7.94 mm respectively. For
the finger spring, a D44-N52 magnet and three B222G-N52
magnet from K&J Magnetics were used for m1 and m2 at
distances of rA = 6.60 mm and rB = 9.70 mm respectively.
The experimental results are shown in Fig. 8(a) and (b) for
the wrist spring and finger spring respectively.

The unstable equilibrium point of the finger in the fab-
ricated robot was measured as θ2 = 47° ± 5° by slowly
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(Finger - Moving)

Magnet 1 
(Wrist - Fixed)

B (T)

Origin 
(Center of Rotation)

Fig. 6. Example COMSOL simulation. The color bar indicates the magnetic
flux density B produced by both magnets at different x-y positions.
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Protractor
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(Fixed)

(Rotates)

Fig. 7. Experimental apparatus for measuring the torque produced by the
SMART spring on link B. (a) CAD model, (b) photograph.



displacing the finger manually until it snapped to its other
stable position. Similarly the stable equilibrium point of the
wrist was measured as θ1 = 0°±5°. Static friction prevented
more precise measurements of the equilibrium points.

Finally, the robot was placed inside of a 3-axis Helmholtz
coil system capable of producing 20 mT fields in three
dimensions at speeds up to 50 Hz. An open-loop control
algorithm was used to demonstrate the independent wrist
and gripper operation (see the included video). The bistable
behavior of the gripper was evident: the gripper would “snap”
between its open and closed positions, and it would remain
stable in each position even in the absence of opening/closing
applied fields. The constant stiffness behavior of the wrist
was also observed: linearly increasing field strengths pro-
duced linearly increasing joint angles.

V. DISCUSSION

The results in Fig. 8(a) show excellent agreement between
the analytical model and the FEA model in predicting the
wrist spring torque. The experimental results show reason-
able agreement in that the torque is very nearly linear, but
the linear best-fit stiffness for the experimental results is 25%
lower than the stiffness predicted by the analytical and FEA
models. It is possible that tolerances in the construction of the
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Fig. 8. Predicted dipole model, FEA numerical model, and scaled
experimental measured joint torque versus joint angle for (a) Wrist joint
(constant stiffness) and (b) Finger joint (bistable negative stiffness).

experimental apparatus resulted in a slightly larger spacing
between the magnets than intended. Due to the cubic effect
of distance rA + rB on the stiffness, a misalignment of only
0.5 mm could account for the 25% change in stiffness.

The results in Fig. 8(b) show reasonable agreement be-
tween the analytical model and the FEA model in predicting
the finger spring torque for large values of θ2 (when the
magnets are close together) but slightly worse agreement
for small values of θ2 (when the magnets are farther apart).
The worse agreement may be due to the relatively small
torques being affected by the numerical precision of the
FEA simulation. Conversely, the experimental results show
excellent agreement with the analytical model, though the
FEA model is well within the range of uncertainty of the
experimental measurements. The close agreement between
experimental results and theory was unexpected because
magnets with higher aspect ratios (like the finger magnet)
tend to be poorly represented by the dipole assumption [16].

Overall, the qualitative behaviour of the magnetic robot
as it was actuated in a magnetic field was indicative of a
successful design. The finger joint exhibited bistability with
an unstable equilibrium within the designed region, and the
wrist joint responded linearly to increasing torques, which
implies a constant-torque wrist spring response. However,
static friction in the joint proved to be significant enough to
result in steady-state errors in response to step inputs.

A. Limitations and Future Work

Friction in the mechanism was non-negligible. The mech-
anism components were composed of UV resin and were
manufactured with relatively poor tolerances (±25 µm) com-
pared to other machining processes. A future design could
take advantage of precision machining of metal or other low
friction materials. Feedback control may also allow some
compensation for friction in the future.

The design methodology described here was ad hoc for
the specific manipulator geometry. Whether a generalized
method for designing or even optimizing SMART springs
could be produced remains an open question. Furthermore,
the magnetic actuation design of the robot was based on an
existing magnetic gripper, but in the future it may be more
effective to simultaneously design the SMART spring and
magnetic actuation of the robot.

This study was limited to examining the interactions
between magnets on adjacent links. However, there are also
magnetic interactions between all magnets in the mechanism.
Modeling multiple-magnet interactions over the workspace
of a serial manipulator and determining their effects on the
magnetic spring torques is an area of future work.

While constant stiffness and nonlinear bistable SMART
spring were presented here, the design space of SMART
springs is vast and highly variable. Other beneficial torque-
displacement relationships could produce complex passive
behaviours in magnetic mechanisms. For example, it may
be possible to manufacture magnetic mechanisms with pop-
up behaviours. This paper only scratches the surface of the
potential applications of magnetic torsion springs.



REFERENCES

[1] X.-Z. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco, M. Hoop,
F. Mushtaq, B. J. Nelson, and S. Pané, “Small-Scale Machines
Driven by External Power Sources,” Advanced Materials, vol. 30, pp.
1 705 061(1–22), Feb. 2018.

[2] F. Leong, N. Garbin, C. D. Natali, A. Mohammadi, D. Thiruchelvam,
D. Oetomo, and P. Valdastri, “Magnetic surgical instruments for
robotic abdominal surgery,” IEEE Reviews in Biomedical Engineering,
vol. 9, pp. 66–78, 2016.

[3] J. Chen, Z. Liang, Y. Zhu, C. Liu, L. Zhang, L. Hao, and J. Zhao,
“Towards the exploitation of physical compliance in segmented and
electrically actuated robotic legs: A review focused on elastic mecha-
nisms,” Sensors, vol. 19, pp. 5351(1–22), Dec. 2019.

[4] M. A. Woodward and M. Sitti, “Universal Custom Complex Mag-
netic Spring Design Methodology,” IEEE Transactions on Magnetics,
vol. 54, no. 1, p. 8200213, Jan. 2018.

[5] ——, “Tailored Magnetic Springs for Shape-Memory Alloy Actuated
Mechanisms in Miniature Robots,” IEEE Transactions on Robotics,
vol. 35, no. 3, pp. 589–601, June 2019.

[6] J. Choi, S. Park, W. Lee, and S.-C. Kang, “Design of a robot joint
with variable stiffness,” in IEEE International Conference on Robotics
and Automation (ICRA), Pasadena, USA, May 2008, pp. 1760–1765.

[7] A. Sudano, D. Accoto, L. Zollo, and E. Guglielmelli, “Design,
development and scaling analysis of a variable stiffness magnetic
torsion spring,” International Journal of Advanced Robotic Systems,
vol. 10, pp. 372:2013(1–11), 2013.

[8] A. Sudano, N. L. Tagliamonte, D. Accoto, and E. Guglielmelli,
“A resonant parallel elastic actuator for biorobotic applications,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Chicago, USA, Sept. 2014, pp. 2815–2820.

[9] Y. Zheng, X. Zhang, Y. Luo, Y. Zhang, and S. Xie, “Analytical study of
a quasi-zero stiffness coupling using a torsion magnetic spring with
negative stiffness,” Mechanical Systems and Signal Processing, vol.
100, pp. 135–151, Feb. 2018.

[10] M. C. Hoang, V. H. Le, J. Kim, E. Choi, B. Kang, J.-O. Park, and C.-
S. Kim, “Untethered Robotic Motion and Rotating Blade Mechanism
for Actively Locomotive Biopsy Capsule Endoscope,” IEEE Access,
vol. 7, pp. 93 364–93 374, July 2019.

[11] M. Simi, G. Gerboni, A. Menciassi, and P. Valdastri, “Magnetic
Torsion Spring Mechanism for a Wireless Biopsy Capsule,” Journal
of Medical Devices, vol. 7, no. 4, p. 041009, Dec. 2013.

[12] C. Forbrigger, A. Lim, O. Onaizah, S. Salmanipour, T. Looi, J. M.
Drake, and E. Diller, “Cable-less, Magnetically-Driven Forceps For
Minimally Invasive Surgery,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1202–1207, apr 2019.

[13] A. Lim, A. Schonewille, C. Forbrigger, T. Looi, J. M. Drake, and
E. Diller, “Design and Comparison of Magnetically-Actuated Dexter-
ous Forceps Instruments for Neuroendoscopy,” IEEE Transactions on
Biomedical Engineering, vol. 68, no. 3, pp. 846–856, Mar. 2021.

[14] L. L. Howell, Compliant Mechanisms. John Wiley & Sons, Inc.,
2001.

[15] J. J. Abbott, E. Diller, and A. J. Petruska, “Magnetic Methods in
Robotics,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 2.1–2.34, 2020. [Online]. Available: doi.org/10.
1146/annurev-control-081219-082713

[16] A. J. Petruska and J. J. Abbott, “Optimal permanent-magnet geome-
tries for dipole field approximation,” IEEE Transactions on Magnetics,
vol. 49, no. 2, pp. 811–819, Feb. 2013.

doi.org/10.1146/annurev-control-081219-082713
doi.org/10.1146/annurev-control-081219-082713

	Introduction
	Analytical Model
	Design Parameters of a SMART Spring
	Behavior of a SMART Spring
	Dimensional Analysis and Scaling Laws

	SMART Spring Design Example
	Constraints and Criteria
	Design Process
	Final Selected Design Parameters

	SMART Spring Model Validation
	Finite Element Analysis
	Experimental Validation

	Discussion
	Limitations and Future Work

	References

