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Abstract
This paper presents a method to independently control the position of multiple microscale magnetic robots in 3D,
operating in close proximity to each other. Having multiple magnetic microrobots work together in close proximity is
difficult due to magnetic interactions between the robots, and here we aim to control those interactions for the creation
of desired multi-agent formations in 3D. Based on the fact that all magnetic agents orient to the global input magnetic
field, the local attraction-repulsion forces between nearby agents can be regulated. For the first time, 3D manipulation of
two microgripping magnetic microrobots is demonstrated. We also mathematically and experimentally prove that the
center-of-mass external magnetic pulling of the multi-agent system is possible in 3D with an underactuated magnetic
field generator. Here we utilize the controlled interaction magnetic forces between two spherical agents to steer them
along two prescribed paths. We apply our method to independently control the motion of a pair of magnetic microgrippers
as functional microrobot candidates each equipped with a 5 degree of freedom motion mechanism and a grasp-release
mechanism for targeted cargo delivery. A proportional controller and an optimization-based controller are introduced and
compared, with potential to control more than two magnetic agents in 3D. Average tracking errors of less than 141 and
165 micrometers are accomplished for the regulation of agents’ positions using optimization-based and proportional
controllers, respectively, for spherical agents with approximate nominal radius of 500 micrometers operating within
several body-lengths of each other.

Keywords
microrobotics, multi-agent control at small scales, underactuated robotics, 3D micromanipulation, targeted cargo delivery,
multi-functional robotics, microgripper

1 Introduction
A microrobot agent is a small-scale robot with

characteristic dimensions less than 1 mm. Microrobots of
simple construction have been explored powered by a number
of different actuation methods for medical applications
including targeted drug delivery, wireless sampling and
microsurgery.

Among many proposed strategies, magnetic actuation has
been recognized as a good choice for hard-to-reach 3D
environments especially inside the human body (Ceylan
et al. 2017) due to its capability to remotely generate strong
torques and forces on magnetic materials in 3D (Zhang et al.
2012), and is safe to generate and manipulate for dexterous
manipulation (Kummer et al. 2010). The capability to use
multiple microrobots operating in parallel has the potential
to increase payload capacity in drug delivery or sampling
applications, gaining a better visibility during in-vivo imaging,
and increasing task speed in pick-and-place manipulation.

Toward magnetic control of teams of mobile microrobots,
a variety of approaches have been investigated. To name a
few, fluidic interactions are considered to achieve dynamic
self-assembly of objects energized by electric or magnetic
fields (Yu et al. 2018; Xie et al. 2019; Kaiser et al. 2017;
Kokot et al. 2015; Salehizadeh et al. 2019). These particles
rotate at a liquid-air interface with complex motions that
are not possible with conventional systems. Arrays of planar
addressing micro-coil arrays were employed to construct

discrete plans throughout an optimal control algorithm to
do manipulation of multiple magnetic microrobots (Kantaros
et al. 2018). A common drawback of these methods is that
they are all limited to 2D applications.

In the same spirit, swarm control of large numbers
of microrobots has been thoroughly investigated by
simultaneous steering of identical microrobots utilizing a
uniform (Yu et al. 2018) and nonuniform (Dong and Sitti
2020) magnetic field. Nevertheless, independent control of
each member of such a large swarm remains elusive as in most
actuation systems, all magnetic microrobots receive identical
control inputs and thus may not be steered independently for
complex task completion (Chowdhury et al. 2015; Rubenstein
et al. 2014). Authors in (Abbott et al. 2017) derived a
general compact analytic approach using linear-algebraic
representations to find a minimum-power dipole solution for
a given set of desired interdipole forces with application to
electromagnetic formation flight. However, their approach
may not be applicable to microrobotic system which is heavily
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Class 1 Class 2 Class 3

based on spatial position
of agents once exposed
to a patterned input
magnetic field
(Rahmer et al. 2017);
(Wong et al. 2016);
(Dong and Sitti 2020);
(Johnson et al. 2020);
(Chowdhury et al. 2017)

based on heterogeneity of agents
realized by (see belows for subclasses):

based on direct field actuation formed by
(see below for subclasses):

(a)

geometrically distinct microrobots:
including (Diller et al. 2013);
(Tottori et al. 2013),
or agents’ tail response to fluid drag
(Khalil et al. 2018)

(a)
external magnetic pulling-only
action via nonuniform field
actuation (Ongaro et al. 2019)

(b)

magnetically distinct microrobots:
through their selective response
to the pulsing frequency of the
applied magnetic fields
(Floyd et al. 2011);
(Diller et al. 2011); using
microrobots with unique
step-out or natural frequencies
(Howell et al. 2018);
(Huang et al. 2014), exploiting
difference in agents’ turning
rate (Becker et al. 2014),
or difference in magnetic
hysteresis (Miyashita et al. 2013)

(b)

homogeneous quasi-static field
(Salehizadeh et al. 2018)

(i)

fully actuated system:
operated by direct
independent magnetic actuation
of multiple
degrees-of-freedom (DOFs)
(Diller et al. 2016);
(Salmanipour and Diller 2018)

(ii)

underactuated system:
operated by inter-agent forces
between multiple magnetic agents
(Salehizadeh and Diller 2016);
(Salehizadeh and Diller 2017b,a);
(Zhang et al. 2018);
(Choi et al. 2017)

Fig. 1. Multi-agent strategies used by existing studies with classification toward independent control of multiple magnetic microrobots.

underactuated and the relation between coil currents and
inter-dipole forces is not always linear.

The ability to exert independent control over a team
of magnetic microrobots has the potential to enable
precision operations, especially for dexterous tasks requiring
microrobots with on-board tools to precisely pick or deliver
cargo such as biopsy samples or drugs. Therefore, it is
essential to customize the system magnetic response for each
agent in the team. In this context, several approaches have
been explored toward the independent control of multiple
magnetic microrobots that can be classified into three classes,
depending on how their control is constructed (see Fig. 1).

The drawback of class 1 is that to get the best output
from this class: agents are required to be identical; the
static task volume is limited and selective which makes it
hard to generalize the class dynamically; and the existing
inter-agent radial and rotational force primitives contributing
to the motion are ignored. Class 2 relies on heterogeneity
requirement as the control basis, which may limit the practical
application and scalability of the method. Class 3 does not
directly rely upon agents’ diversity, hence has a stronger
potential that can be flexibly generalized to 3D and a larger
number of agents. In the pulling-only method 3(a), the authors
designed a highly dexterous electromagnetic coil system by
which they can independently control the position of two
mobile magnetic microrobots in 3D using magnetic gradient
pulling only. That system is capable of generating independent
pulling forces on each of two magnetic agents. The technique
requires solution of a complex nonlinear problem requiring
a significant computational effort and a suitable thermal
management system to prevent the powerful electromagnets
from overheating.

The key advantage of method 3(b) stems from the fact that
it simply relies upon “homogeneous quasi-static” field—a
term that is used to describe a field which is spatially uniform
and constant over short time periods. This requirement makes
the approach a suitable fit specifically for applications inside
the human body, where the coils have to stay far apart over
a distance much larger than the distance between agents.
This condition makes the generation of homogeneous field to
be effectively easier as opposed to the pulling-only method
3(a) that requires a nonuniform field generator with large
field gradient. One can classify class 3(b) itself into two
groups: i) fully actuated, and ii) underactuated systems.
To realize a fully actuated magnetic system, the overall
actuation matrix which relates the system inputs to the
output DOFs must be made full-rank. On the other hand,
for underactuated magnetic systems such as when multiple
magnetic microrobots mutually interact with each other in
close proximity it is crucial to use underactuated robotics
techniques. These types of systems will become inherently
underactuated especially as the number of agents scales up.
The control of agents motion in such underactuated systems
is the main focus of this paper (highlighted in Fig. 1).

Another major challenge with the team control of magnetic
microrobots is that strong magnetic inter-agent forces are
present which tend to cause the microrobots to irreversibly
attract and stick together. Previous studies either ignored
these inter-agent forces by simply assuming their robots
are adequately far apart, or treat these forces as a system
disturbance without verifying the stability in close proximity.
Nonetheless, if one can understand, model and control the
coupled motion of magnetic agents, deterministic locomotion
of the collective robotic team can be achieved, much as
happens in living swarms of organisms (Li et al. 2019).
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Our study provides understanding of the inter-agent forces
for microrobots operating in close proximity and introduces
methods to control the forces to exert additional control of
the team.

Our previous studies (Salehizadeh and Diller 2016,
2017b,a; Zhang et al. 2018) introduced the inter-agent
force method 3(b)-ii to control the motion of two or more
spherical and functional agents in close proximity in 2D
using homogeneous magnetic field by posing the system
as an underactuated first-order kinematic motion problem.
We hypothesize in this paper that use of magnetic inter-agent
forces can be generalized to achieve 3D manipulation of a pair
of mobile magnetic microrobots in close proximity without
letting them touch each other. In this paper, we validate this
hypothesis.

Given that there can be no stable magnetic equilibrium
point in a static magnetic field based on Earnshaw’s
theorem, it can be concluded that any system designed
to manipulate untethered levitating magnetic agents must
use feedback control to stabilize the position of the
agents (Abbott et al. 2020). The main contribution of
this paper is that it discovers the impact of magnetic
inter-agent forces on 3D motion of multiple magnetic
microrobots while manipulated by an underactuated system,
based on which controllers are synthesized and validated to
independently regulate the position of both types of particle
and functional microrobots. Our method incorporates an
applied global magnetic field which not only controls the
global center-of-mass (COM) position and grasp/release
action of microgrippers, but also modulates the local magnetic
interaction between microrobots responsible for the regulation
of the agents’ relative positions. In addition, we demonstrate
mathematically and experimentally that external magnetic
pulling of multiple magnetic microrobots at various range
of separations is possible in 3D using a magnetic generator
with a rank-deficient actuation matrix. Lastly, we generalize
the definition of our control principle in the form of an
optimization-based controller (OBC) which has potential
to control more magnetic agents in 3D. Our experimental
demonstrations include three parts: 1) Path tracking of two
microspheres in 3D. 2) Implementing the idea of inter-agent
forces to functional microrobots in the shape of grippers to
perform 3D cargo delivery. 3) A 3D experimental comparison
of two types of controllers for a two-agent team.

The key attributes of the multi-agent control method
presented in this paper are as follows:

1. It offers a 3D solution to multi-agent magnetic control
by taking benefit from inter-agent forces to control the
motion of agents in close proximity. The presented
approach is invariant to the magnetic manipulation
system used and thus the results presented here could
be repeated in a wide variety of microrobotic magnetic
manipulations systems which can create a magnetic
field in an arbitrary direction.

2. The approach does not depend on whether the field
generation coils are far or close from the workspace,
can be applied to microrobots with either soft
(non-permanent) or hard (permanent) magnets, which
are all identical or nonidentical.

3. Since the method only relies on the orientation of the
applied magnetic field, in addition one could benefit
at the same time from other aspects of the uniform
field such as its magnitude and frequency to build
multimodal field-activated medical devices or to run
cooperative drug delivery tasks (Salehizadeh et al.
2019; Zhang et al. 2018; Wang et al. 2018).

4. Small-scale devices which consist of multiple magnetic
actuators suffer from cross-talk in their functions
mainly due to inter-magnet forces (Salmanipour and
Diller 2018). The underlying method in this paper can
be engaged to eliminate those cross-talks by making
full use of inter-agent forces that get pronounced over
small separations.

The paper is structured as follows. Section 2 describes
the 3D kinematics of agents along with the inter-agent
force relation. Section 3 introduces our control principles
to regulate the relative motion of agents; accordingly, a
systematic feedback control law is synthesized to handle
best performance. Next, fabrication method and experimental
setup are presented in Section 4. The paper ends in Section 5
with experimental results demonstrating the independent
position control of a pair of magnetic microrobots. This paper
is concluded in Section 6.

2 Concepts and definitions
This section introduces the 3D kinematics describing a

pair of magnetic agents along with the inter-agent force
relation, and lays the foundation for controlling a two-agent
configuration in 3D.

2.1 Force and torque on a magnetic agent
We begin the problem formulation by reviewing the

relevant background. In the presence of magnetic field vector
b generated by another source, a magnetic agent characterized
by magnetic momentm is compelled to translate and rotate
in an attempt to minimize magnetic energy (−b ·m). As
a result the magnetic agent will experience a torque which
tends to rotate the agent into alignment with the field, and
a force which pulls the agent according to the shape of the
magnetic field. The magnetic force can be expressed linearly
with respect tom (Abbott et al. 2020):

f3×1 = ∇(b ·m) =
[

db
dx

db
dy

db
dz

]
︸ ︷︷ ︸

B∇

>
m (1)

The spatial field-derivative matrix above is denoted by B∇

which is symmetric with a trace of zero based on Maxwell’s
equation (Petruska and Nelson 2015). The magnetic torque τ
can be expressed as

τ3×1 =m×b= S{m}b. (2)

Where the function S{m} indicates the skew-symmetric
matrix packing of vectorm. Note that it is impossible for a
single magnetic agent to generate torque about the m axis,
regardless of the magnetic field. This constrains force-torque
generation on a magnetic agent to 5 degrees of freedom
(DOF) (Mahoney and Abbott 2016).
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2.2 Force and torque between a pair of
magnetic agents

The force imparted on a magnetic agentm j at location P j
from the field derivative B∇{P j,mi,Pi} associated to another
magnetic agentmi is:

fi j =
3µ0

4π‖ri j‖4

(r̂>i jm j

)
mi +

(
r̂>i jmi

)
m j+

(
m>i m j−5

(
r̂>i jmi

)(
r̂>i jm j

))
r̂i j

, (3)

where ri j =P j−Pi. The resulting forces decay with distance
to the fourth power, which is more rapidly than the field (and
torque). The forces between dipoles are equal and opposite.
Note that the relation between force and the agent acting as
the field source (eithermi orm j) is nonlinear (Abbott et al.
2020).

2.3 3D forward kinematics of two magnetic
agents and magnetic inter-agent forces

Assumption field alignment. The main assumption behind
this work is that all magnetic moments on the mobile
microrobot agents are all simultaneously aligned with the
applied field.

Throughout this paper, all distance variables are normalized
by the agent size 2R which denotes the body diameter of
agents if modeled as a sphere. These normalized distances
are denoted by an asterisk. The system kinematics parameters
are shown in Fig. 2. In local spherical coordinate frame
(êr, êφ , êθ ) defined with respect to the pairwise separation
vector with origin set at the position of the second agent, the
radial, azimuth, and polar components of the local magnetic
force exerted on the second agent by the first agent can be
written as

fr =
Ω

r4 [1−3cos2(α)cos2(ψ)], (4a)

fφ =
Ω

r4 [cos2(α)sin(2ψ)], and (4b)

fθ =
Ω

r4 [sin(2α)cos(ψ)]. (4c)

The three orthogonal inter-agent force components are
sketched as a function of local control input angles ψ and α

in Fig. 3(A) to (C). Here Ω := 3µ0m1m2
4π

is the force constant.
Permeability of free space is denoted by µ0, ψ is the local
in-plane (yaw) control input angle defined as the angle
between the projection of the applied field ba in (êr, êφ ) plane
and the separation vector r. The out-of-plane (pitch) control
input angle is denoted by α measured upward from (êr, êφ )
plane. In 3D space, it is required to levitate the agents against
their own weight by a constant force. This force needs to be
strong unless we make agents neutrally buoyant.

2.4 Magnetic field strength requirement
The total field at the location of an agent is the vector sum

of the inter-agent local field b21 (field on agent 2 created by
agent 1) and the applied field ba. To comply with the field

X∗
Y∗

Z∗ COM r

1

2

O
x1

y1

z1

ba

m1

m2

fr, êr

fφ , êφ

fθ , êθ

φ
θ

ψ

α

local coordinate

global coordinate

Fig. 2. 3D kinematics of two magnetic agents. The control inputs
are angles yaw and pitch denoted by ψ and α , respectively,
which characterize the heading of the applied field ba in local
coordinate with respect to the separation vector r. Local states of
the system are x̄local = [r φ θ ]T describing the separation vector
(local frames are shown in blue). These states are associated to
the radial, azimuth, and polar inter-agent magnetic forces denoted
by fr, fφ , and fθ , respectively. The aforementioned three force
vectors represent the local independently-controllable DOFs of
the robot. Global states of the system are x̄COM = [xc yc zc]

>

associated to the center-of-mass (COM) of the team expressed
in OXYZ frame.

alignment assumption 2.3, ba is required to dominate b21.
Here we check our assumption that the local field created
by a nearby agent does not rotate the total field at an agent’s
location. In this respect, the applied field strength can be
chosen such that the total field angle error less than a threshold
given by θε = γa− γ , where γa and γ respectively represent
the actual and desired direct angles made between the total
field and applied field with the radial coordinate r. One
can express the desired angle γ as a function of in-plane ψ

and out-of-plane α angles with γ = cos−1
[

cos(α)(1+cos(2ψ))
2cos(ψ)

]
.

Also, the actual angle associated to the total field can be
calculated as γa = ∠btot = ∠(ba +b12). For a given angle
error threshold θε , the minimum required field strength bmin
in this case is

bmin =
b−
√

b2−4ac
2a

. (5)

Where

a =
1

A1
2 −

1
A2

2 , (6a)

b =
µ0m( 4

A1
2 +

2
A2

2 −3)

4πr3 , (6b)

c =
−µ2

0 m2( −4
A1

2 +
1

A2
2 +6)

16π2r6 , (6c)

where A1 = cos(θε + cos−1(A2)), and
A2 = cos(ψ)cos(α).

Fig. 4 illustrates the minimum required field strength as a
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A B C

D

E1

E2

G

F1

F2

ψ (deg)α (deg)

f r
(µ

N
)

ψ (deg)α (deg)

f φ
(µ

N
)

ψ (deg)α (deg)

f θ
(µ

N
)

(ψ = 0◦and θ = 0◦)set:full attraction
if: too far r > rdes

φ
θ

ba

X∗ Y∗

Z∗

m1

m2, êr

1

2
fr

fφ , êφ

fθ , êθ

r

x
global coordinate

0.5rdes

local coordinate

xy-plane

(ψ = 90◦or θ = 90◦)set:full repulsion
if:too close r < rdes

COM

fr, êr

fφ , êφ

fθ , êθ

r
2

1

ba

X∗
Y∗

Z∗

separation

control
m1

m2

r→ r+des r→ r-des

ba

X∗
Y∗

Z∗

θ < θdes

polar switching control
CCW

desired heading

fr, êr fθ , êθ

fφ , êφ

α
=
+

54
.7

4
◦

θ

x
m1

m2

1

2

r

ba

X∗ Y∗

Z∗

φ < φdes desired heading

CCW
azimuth switching control

r

fθ , êθfr, êr

fφ , êφ

x

0.5rdes

m1

m2

φ

ψ
=+54.7

4◦

1

2

m1

m2

φ

φ > φdes

ba

X∗ Y∗

Z∗

CW
azimuth switching control

ψ =−54.74◦

fr, êr
fθ , êθ

fφ , êφ

1

2

x

r

θ > θdes

ba

X∗ Y∗

Z∗

polar switching control
CW

x

m1

m2

1

2

r

θ

α =−54.74◦

fr, êr

fθ , êθ

fφ , êφ

sign of ψ or fφ axis
is flipped

w.r.t. (êr , êθ ) plane

at set point

(ψ =±54.74◦, α =±54.74◦)

to control
the heading of separation

(φ ,θ )
at goal distance

rdes

sign of α or fθ axis
is flipped

w.r.t. (êr , êφ ) plane

Fig. 3. The periodic instantaneous radial, azimuth, and polar force components of the inter-agent force are respectively graphed in
(A), (B), and (C) as a function of two local control input angles ψ and α . The control inputs are the yaw and pitch angles denoted by ψ

and α , respectively, which describes the heading of applied field ba as well as the heading of m1 and m2. Basic magnetic inter-agent
control principle (Bang-Bang) of a pair of magnetic agents is sketched in spherical coordinate (from reversible D to G cycle). The main
assumption is that all magnetic moments are all aligned with applied field simultaneously. In each plot the active local force component
is colored in brown to distinguish which force is responsible for the corresponding motion primitive. D) When two agents are too far put
(ψ = 0◦ and α = 0◦) to achieve full attraction fr in the radial direction. When the separation between two agents reaches the desired
distance (rdes), decision is made based on the sign of yaw or pitch angles associated to the applied field to regulate the heading of
separation vector in either azimuth or polar directions sketched (from E1 to F2) via either azimuth fφ or polar fθ forces, respectively.
G) When two agents are too close put (ψ = 90◦ or α = 90◦) to achieve full repulsion fr in the radial direction. Animation is available in
the supplementary video.
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0

5
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15
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25
ψ = 25◦

ψ = 45◦
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ψ = 25◦

ψ = 45◦

ψ = 75◦

α = 0◦,
α = 0◦,

α = 0◦,
α = 60◦,
α = 60◦,
α = 60◦,

r = 2.8R

Pair separation ( r
R )

b m
in

(m
T

)

Fig. 4. Minimum required input field strength as a function of
pair separation r for multiple control angles α and ψ to limit the
total angle error to θε = 5◦ (|M | = 104 A/m). The radius and
magnetization of agents are denoted by R and M .

function of pair separation r for multiple control angle inputs
ψ and α , using a maximum angle error of θε = 5◦. For the
experimental section of this paper, we maintain a field strength
of 10 mT, to be higher than the minimum required field and
assume that the agents always align with ba. To control over
separations shorter than 2.8R, the minimum required input
field strength needs to be increased significantly.

3 3D Position Control of Two-Agent
Configuration

This section presents the control principle based on
magnetic inter-agent forces that we developed to perform
independent 6-DOF position control of two magnetic
microrobots using a tri-axial Helmholtz coil system. The
tri-axial Helmholtz coil system has six independent coils.
As illustrated in Fig. 3, the relative positions of agents is
simply set up by modulating the magnetization direction
of agents through the change in the orientation of applied
uniform magnetic field. The global position is controlled by
pulling the center-of-mass (COM) of the team Pc through the
generation of a magnetic field gradient superimposed over the
uniform applied field.

3.1 Inter-agent control
Fig. 3(D) to (G) illustrates our inter-agent control principle

to adjust internal states x̄local = [r φ θ ]> expressed in local
spherical coordinate frame O1x1y1z1 (see Fig. 2) with respect
to the separation vector. The pseudocode used to implement
this localized controller is presented in Algorithm 1. The
dynamic equilibrium of the underlying multi-agent system
happens when two agents arrive at desired separation and pair
heading orientation.

Importantly, as graphed in Fig. 3(A) to (C) at periodic
setpoint angles, ψs = 54.74◦ and αs = 54.74◦, the radial
force becomes zero (des stands for desired). If the 3D space
between two agents is around the goal spacing (r ≈ rdes),

Algorithm 1 Inter-agent force P-control algorithm

1: Local control inputs to system: ū= [ψ α]>

2: System outputs: x̄= [r φ θ ]>

3: if r > rdes see Fig. 3(D) when agents are too far then
4: ψ ⇐ 0 and α ⇐ 0
5: else if r < rdes see Fig. 3(G) when agents are too close

then
6: ψ ⇐ 90 or α ⇐ 90
7: else if r ≈ rdes see Fig. 3(E1) to (F2) when agents get

near goal separation then
8: Synthesize P-controller
9: ψ ⇐ ψs + kl p(r − rdes), where kl p > 0 and

ψs =±54.74◦

10: α ⇐ αs + kl p(r− rdes) , where αs =±54.74◦

11: if φ < φdes see Fig. 3(E1) then
12: ψ ⇐ ψ

13: else if φ > φdes see Fig. 3(E2) then
14: ψ ⇐−ψ

15: end if
16: if θ < θdes see Fig. 3(F1) then
17: α ⇐ α

18: else if θ > θdes see Fig. 3(F2) then
19: α ⇐−α

20: end if
21: end if

the controller would choose intermediate angles ψ and α

locally between 0◦ and 90◦ centered around the setpoint,
leading to the P-control law: ψ ⇐ ψs + kl p(r− rdes) and
α ⇐ αs + kl p(r− rdes) where kl p represents the control gain,
see Fig. 3(E) and (F) subplots. It can be seen from Fig. 3(A)
to (C) that at any angle between 0 and 90◦, a non-zero
tangential force (fφ or fθ ) occurs which causes the pair of
microrobots to rotate about one another. By reflecting the
control angle about ψ = 0◦ or α = 0◦, the tangential forces
can be reversed without affecting the radial force. This sign
flipping enables the control of the pair heading’s yaw φ or
pitch θ angles around their goals φdes or θdes by constantly
switching the rotation direction of the pair complex as shown
in the state transition of Fig. 3(E) to (F). Readers are referred
to Appendix A for stability proof of the local state controller
at set point.

3.2 Team center-of-mass magnetic pulling in
3D

The center-of-mass of the team of agents represents global
state of the system denoted by x̄COM = Pc = [xc yc zc]

> and
shown in Fig. 2. This state is controlled globally by external
magnetic pulling. The uniform component of the field needs
to be always kept on and remains at a constant magnitude
(10 mT), whereas the field gradient can be varied as needed
(up to a limit) so that it does not compromise the uniform
field assumption 2.3. The gradient field could be turned off
anytime to stop pulling the COM of the system. Animation is
available in the supplementary video. In turn the velocity of
each agent will be a net contribution of four motion primitives
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that can be written for agent i as follows:

vi =
dx̄i

dt
=

1
6πµR

[friêr +fφ iêφ +fθ iêθ︸ ︷︷ ︸
inter-agent forces

+fP
Pcdes −Pc∥∥Pcdes −Pc

∥∥︸ ︷︷ ︸
COM pulling force

].

(7)
Three of these motion primitives refer to the projections of the
inter-agent force in the radial, azimuth, and polar directions
associated with the separation vector and denoted by fri, fφ i,
fθ i. The fourth motion primitive refers to the magnetic pulling
fP which is externally supplied by the magnetic generator
system and attempts to pull agents from their current (Pc) to
desired center-of-mass (Pcdes ). The next section explains how
to combine relationships 3.1 and 3.2 to construct the overall
actuation matrix under the existing constraints and convert
the four discussed primitives into desired system motion.

3.3 Combined field and force control
Typically in (1) the spatial derivative of the field (B∇)

is considered as the system input to be controlled in the
generation of pulling force fP, and not m. In fact the
field-derivative matrix limits the number of truly independent
quantities in any magnetic field (Abbott et al. 2020). As
such (1) can be nonuniquely reformulated to separate the role
of the manipulated dipole matrix MG from five independent
spatial derivatives (“gradients” vector G). The elements of G
are drawn from the elements of the field-derivative matrix B∇

in (1) as follows,

fP = MG{m}G, (8)

where MG =

 mx my mz 0 0
0 mx 0 my mz
−mz 0 mx −mz my

 ,

and G =

[
∂bx

∂x
∂bx

∂y
∂bx

∂ z
∂by

∂y
∂by

∂ z

]>
.

The following discussion is valid for an array of n
electromagnetic coil currents. However, we put our focus
here on a tri-axial Helmholtz coil system which includes
six orthogonal coils. The electromagnetic coil currents for a
tri-axial Helmholtz coil system are given by,

I = [Ix− Ix+ Iy− Iy+ Iz− Iz+ ]
>. (9)

The following equation maps the array of n electromagnetic
coil currents I to the output vector Y enclosing magnetic field
and global pulling force at workspace through the “actuation”
matrix S.

Y =

[
b
fP

]
= [bx by bz fpx fpy fpz]

> = S6×n In×1, (10)

such that,
S = Mb,fP6×8 F8×n, (11)

with the “coil” matrix F = [B> G>]> which is partitioned
into its field B and field-gradient G matrix components and
has the role to map the vector of six coil currents I to the

vector of eight desired magnetic field inputs U = [b> G>]>

via U = FI . Also, the “system’s manipulation” matrix maps
the magnetic field input vector U to the pulling force vector
fP, and is expressed as,

Mb,fP{m}=

[
I3 03×5

03×3 MG{m}

]
. (12)

Each column of the F matrix corresponds to one of the
field generating coils. One can either obtain each element
of F matrix fully throughout experimental calibration or
in our case based on the Biot-Savart law and matrix
transformations. In this respect, we obtained the unit
current-field map after explicitly measuring the magnetic field
at the center of our tri-axial Helmholtz coil system, and then
analytically computed the gradients of field components with
calibration based on the involved geometrical parameters (see
equations (15-18) in (Salmanipour and Diller 2018) for
more information). Following the standard setup notations
introduced above, the coil matrix representing our tri-axial
Helmholtz coil generator is derived as

F =



3.6 3.6 0 0 0 0
0 0 3.5 3.5 0 0
0 0 0 0 3.5 3.5
−40 40 40 −40 30 −30

0 0 0 0 0 0
0 0 0 0 0 0

20 −20 −90 90 30 −30
0 0 0 0 0 0


. (13)

The field associated entries above the line in matrix F have
[mT] unit, and the field gradient associated entries below
the line have [mT/m] unit. Calculating the rank of matrix
GNB (see (11)) for a tri-axial Helmholtz coil system, where

NB ≡
(

In−B>
(

BB>
)†

B

)
is the right null space of B,

quantifies the number of field-derivatives that the system is
capable to control independently from the field, which is only
2 in normal scenario for this type of coil system as supposed
to 5 for an OctoMag system (Petruska and Nelson 2015). Note
that the actuation matrix for a tri-axial Helmholtz coil system
is assumed invariant to the position of agents moving near the
center of workspace due to the system’s capability to generate
uniform field and gradient.

3.4 Pseudoinverse current solution
Petruska and Nelson (Petruska and Nelson 2015) showed

that the minimum number of coils needed to create any desired
force direction on a single agent at any requested input of
uniform field is eight. Apparently compared with a tri-axial
Helmholtz coil system an 8-coil system such as Octomag
is expected to yield a better result as it does not attribute
to any singularities in the generation of a field gradient in
desired direction. But we decided to use tri-axial Helmholtz
coil system because of two reasons: 1) Having applied our
method to a Helmholtz coil system considered as a relatively
harder case than an 8-coil system, we aimed to demonstrate
that our control principle solution can be easily generalized
in a similar routine, to any other type of magnetic generator
system. 2) The available uniform field workspace produced by
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our existing Octomag system in our lab was not adequate to
span the uniform field volume required by our team of agents.

The tri-axial Helmholtz coil system is capable to generate
uniform-gradient fields (Yesin et al. 2006) but owns a
rank-deficient actuation matrix. As a result, 3D pulling along
a straight path connecting team’s center-of-mass to goal may
not be exactly achievable. However, one can still decompose
the straight path into feasible paths for which force would
exist. For a desired field/force vector, the optimal solution of
coil currents that gets us closest to the desired torque/force
value can be found using the pseudoinverse of the actuation
matrix SY , which returns the value that minimizes ‖I‖
subject to the constraint that the norm of output vector error
‖SY I− [bdes fPdes]

>‖ is minimized. Due to the constraint on
the uniform field both in direction and magnitude assigned
identically to all agents, bdes should be pre-conditioned over
fPdes. Algorithm 2 renders how to synthesize the coil currents
to accomplish desired combined field and pulling force so
that the spacing and center-of-mass of the team of agents can
be regulated.

Algorithm 2 Synthesis of coil currents algorithm

1: Global control input to system: fPdes and bdes
2: System output: The vector of coil currents I

3: Construct the pulling action fPdes = kP(Pcdes −Pc)
4: Construct the applied field bdes with control inputs ψ and

α obtained from Algorithm 1
5: Calculate the coil currents I from pseudoinverse current

solver: I = S†
Y [bdes fPdes]

> by taking fPdes as input
from step 3 subject to the constraint on bdes made in
step 4. Choose the one that minimizes ‖I‖ in case of
multiple current solutions.

A singularity refers to a direction along which a desired
exact force cannot be generated.

Remark 1. The following two points are considered in our
pulling actuation design:

• The worst-case force singularity occurs when
|∠fPdes−∠fP| > 90◦ or equivalently ‖fPdes−fP‖
exceeds a certain threshold. Whenever this condition
occurs the pulling action is turned off.
• In case generating a desired pulling force demands

larger than a certain threshold power, we normalize
the current proportionally to make sure at least the
direction of pulling force would be correct.

To perform field and force control, we consider the
combined matrix S known as actuation matrix in (11). Here
we study the reachable force space that can be generated via
a tri-axial Helmholtz coil system. We show that this space is
limited and at each instant of actuation time there is always
a dipole-moment direction at which the achievable forces
decrease from a 3D-space to a 2D-space.

3.5 Is the center-of-mass external magnetic
pulling of the multi-agent system possible
in 3D using an underactuated magnetic
field generator?

Here we analyze the singularity for a six mutually
orthogonal and independent electromagnets based on
Helmholtz configuration, but can extend the same idea to
any other magnetic setup developed for a multi-agent system.
At singular configurations, S loses rank compromising the
system independent actuation. These singularities are due to
the nonexistence of the current to explicitly generate a desired
force constrained by the field’s orientation and magnitude as
well as coil configuration.

3.5.1 Quantifying accuracy cloud of the pulling force Here
we quantify how varying the control input (magnetization
or equivalently applied uniform field) in global coordinates
affects the pulling capability at the COM of the team.
Let A map out the current to the pulling force written as
fP = AI . The nature of existing singularities becomes evident
after applying the singular value decomposition (SVD) to
decompose A as

A =UΣV>, (14)

where the input current singular vectors are the columns of
the orthonormal V = [v1, · · · ,vn], the output force singular
vectors are the columns of the orthonormal U = [u1, · · · ,un],
and the singular value matrix Σ is of the form

Σ =

σ1 0 0 0 0
0 σ2 0 0 . . . 0
0 0 σ3 0 0


3×6

. (15)

We need this tool because A is non-invertible in our
case and will allow us to identify the accuracy cloud or
maximum likelihood of pulling force distribution in 3D for
the multi-agent system. For full 3-DOF pulling force control,
all the three singular values must be nonzero. In Fig. 5, the
singular values, σ1 through σ3, describe the relative strength
of the pulling force in the three orthogonal directions of
the output force singular vectors (U-basis), which do not
necessarily correspond to the principal axes of the workspace
(E-basis) or the separation vector. E in E-basis stands for the
world frame’s Euclidean space. Fig. 5(A) to (C) confirm that
for a virtual single agent centered at the origin singularity
appears (red arrow) if the magnetization is kept stationary.
Hence, the force space will be a plane. However, remarkably,
since the magnetization input constantly varies by the local
control input angles ψ and α at the subsequent short period
of times around a “central” magnetization axis, e.g.m〈110〉 in
Fig 5(D), the reachable force space will span a 3D cloud. This
unique switching property of our control law not only enables
regulation of the team’s orientation, but also makes the 3D
pulling possible using a tri-axial Helmholtz coil system with
a rank-deficient actuation matrix.

Lemma 1. Consider that Assumption 2.3 holds and direction
of separation vector and agents’ magnetization continuously
modulates in the global workspace frame at all times ∀t ∈ R.
Then, the time-averaged pulling force spaces will span a filled
elliptical volume for a tri-axial Helmholtz coil.
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〈fP1,fP2〉=
[
A1|A2

][
I1
I2

]
=

4 7
0 0 0 mt1x

...
... 0

...

0 0 0 0
...

... mt1y

...

︸ ︷︷ ︸
C1(m1)

0 0 0 −mt1z

...
... −mt1z

...

4 7

0 0 0 mt2x

...
... 0

...

0 0 0 0
...

... mt2y

...

︸ ︷︷ ︸
C2(m2)

0 0 0 −mt2z

...
... −mt2z

...


F8×6 0

0 F8×6

[I1
I2

]
.

(16)

Proof. Let fP1 = A1I1 and fP2 = A2I2 represent the force
vector spaces occur at two successive times t1 and t1 +∆t
such that ∆t→ 0, subject to two non-collinear magnetization
inputs mt1 and mt2 respectively, then based on (11) the
time-averaged force can be written as equation (16) above.
Here we prove why the resulting matrix [A1|A2] which is
the horizontal concatenation of two actuation matrices at
two successive times will get full rank. Without loss of
generality, the representative matrix F in equation (13) voids
all columns in each of matrices C1 and C2 in (16) except
their 4th and 7th columns as highlighted. Given that mt1x ,
mt1y , and mt1z appear at mutually orthogonal row entries
in C1, it can be concluded that there are no worse central
magnetizations other than those aligned with the coil’s
principal axes at which the column rank of fP1 would reduce
to one as the lowest rank possible at t1. To construct fP2
at subsequent time slot t1 +∆t let ε1 and ε2 represent the
nonzero continuous deviations of mt2 away from the worst
case central magnetizationmt1 by local control input angles
ψ and α , then the absolute determinant of the augmented
manipulation matrix C is calculated as abs(|C|)= ε1ε2 6= 0
where C =

[
C1(mt1)|C2(mt2)

]
. Thus, matrix C gets full rank.

Since rank(F) = 5 for a tri-axial Helmholtz coil system,
therefore, the total actuation matrix

[
A1|A2

]
will get full

row rank. For example, for the principal magnetization
mt1 = [1 0 0]> only three orthogonal columns in C will stay
intact (the zero columns are removed) rendered as,

row rank(C) = rank

 1 1 0
0 0 ε1
0 −ε2 −ε2

= 3 (17)

Consequently, two force spaces fP1 and fP2 will merge
and the intersection of Nullspaces would change from plane
(2D) or line (1D) to point (0D). Hence, on average it makes it
possible to move agents asymptotically toward pulling goal.�

3.5.2 Correlation between the separation and force
distribution Our simulations show that under the imposed
constraint that agents’ magnetization has to continuously
sweep around the separation vector to maintain the agents pair
at desired pair heading, then the external pulling force on each
agent will fill an elliptical volume as computed and illustrated
in Fig. 5(E-F). Here we report on the optimal and weakest
scenarios that exist in pulling capability as the separation
vector varies. We can use a performance index κ to evaluate
the relative strength of the force that can be generated in
different directions:

κ =
σr

σ1
. (18)

To some applications of interest, one may need to treat a
pair of agents as a dynamic entity and determine a direction
along which a pair of agents can exert maximum force to

A B

C D

E F

m110 m11−1

m111 m〈111,110,11−1〉

E1

E2

E3

E1
E2

E3

E1

E2

E3

E1 E2

E3

σ1

σ2
σ3

σ1
σ2

σ3

σ1
σ2

σ3

σ1

σ2

σ3

X∗ Y∗

Z∗
m001

fPr
σ1

σ2

σ3

σ1

σ2
σ3

−2 0 2

−4

−2

0

2

4

−2
0

2

xy-plane

plane

plane cloud

X∗ Y∗

Z∗

−4

−2

0

2

−2 0 2
−2

0

2

fP

m111

σ1

σ2 σ3

σ3
σ2

σ1

r

Fig. 5. Quantification of the magnetic pulling force distribution
on a pair of agents for a given unit-strength dipole moment’s
input. From (A) to (D) the accuracy cloud of the magnetic pulling
force exerted on a virtual single agent centered at the origin
is represented in the world frame’s E-basis with U-basis in
green/red (red shows singular direction). Analyses are performed
for different magnetizations: (A) m= [1 1 0]>, (B) m= [1 1 −1]>,
(C) m = [1 1 1]>, and (D) time-averaged magnetization m =
〈111,110,11−1〉. As extended examples for the pair of agents,
the composed elliptical pulling force accuracy cloud is sketched
around each agent in (E) for time-varying magnetization input
m〈001〉, and in (F) for time-varying magnetization input m〈111〉,
while local controller modulates magnetization temporally around
the given central magnetization in 〈.〉 by ψ and α to maintain two
agents at desired separation’s heading. Alternatively, the COM
of system can be used to describe the system’s drag response
to external magnetic pulling force. The brown fP vector shows
the major direction of the pulling force distribution that can be
achieved for the desired separation heading.
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manipulate a cargo. To this end, we introduce κ to compare
the pulling force component along the separation vector σr
to the major orthogonal force basis σ1, approximated using
standard equation of an ellipse where,

σr =
σ1σ3

σ32
∣∣sin(a)sin(b)

∣∣+σ12
∣∣cos(a)cos(b)

∣∣ with

a = 2(φ − π

4
) and b = 2(θ − π

4
). (19)

Here, σ3 represents the minor orthogonal force basis. For
instance, κ = 1 indicates that the strongest force would
occur along the separation vector when separation vector
can align with principle axes of the workspace frame shown
in Fig. 5(E) as one example. In other words, the force
cloud elongates along the separation vector. Lowest κ

configuration occurs when separation vector needs to align
with workspace diagonal axis displayed in Fig. 5(F). Namely,
the force cloud elongates perpendicular to the separation
vector. Conventionally, a different way to define κ is through
force condition number σ3

σ1
(Kummer et al. 2010), which in the

context of this paper describes how isotropic the pulling force
distribution globally will be as the magnetization changes.

3.6 Generic solution to more agents:
Optimization-based control (OBC)

Two-agent configuration is a building block of a team of
microrobots. This part presents a structural compact solution
that generalizes the inter-agent force P-control algorithm (1)
for more agents configured at a prespecified geometry.

Let iftot denote the total force vector created at the location
of agent i by the rest of agents of the set, then iftot =

∑k 6=ifki whereby k ∈ {1, 2, . . . , n} with n as the number
of agents, and fki is the pairwise magnetic force exerted at
the location of agent i solely by agent k, calculated by (3). In
local spherical coordinates defined exclusively for each pair
of agents (êri j , êφi j , êθi j ), the net radial, azimuth, and polar
components of the total magnetic inter-agent forces linked to
pair i j can be written as

ij fr = (iftot− jftot) · êri j , (20a)
ij fφ = (iftot− jftot) · êφi j , and (20b)
ij fθ = (iftot− jftot) · êθi j . (20c)

3.6.1 Fitness function The goal is to find ψ and α angles
solution that minimizes a weighted L2-norm fitness function
so that the relative spacings and angles of the pairs are pushed
toward the desired ones between a set of n magnetic agents in
3D. Let’s state our optimization problem as follows:

(ψ∗, α
∗) =

arg min
ψ, α

F =
n

∑
i, j=1
| ϕ(r̃i j[t +1|t])+ γr

ij fr |2

+λφ

n

∑
i, j=1
| ϕ(φ̃i j[t +1|t])+ γφ

ij fφ |2 D(
φ̃i j

Γφ

)

+λθ

n

∑
i, j=1
| ϕ(θ̃i j[t +1|t])+ γθ

ij fθ |2 D(
θ̃i j

Γθ

).

(21)

The proposed fitness function is a weighted sum of corrective
radial, azimuth, and polar forces. To distinguish the opposite
sign of these forces that infers at each sampling time
whether for the associated link ri j the net radial force
ij fr obtained in (20) gets attractive or repulsive, or when
each of the net azimuth ij fφ or polar ij fθ forces turns the
pair of agents in clockwise (CW) or counter-clockwise
(CCW) directions, navigation function ϕ(.) is considered.
This navigation function could be either a binary function
such as ϕ = sgn(.) leading to a binary response around
the desired states, or a smooth logistic function such as
ϕ(x̃) = 2( 1

1+e−β x̃ −0.5), wherein the conditional predictive
error of each input state for the next sampling time under the
current time (e.g. r̃[t +1|t] = r− rdes) is denoted by x̃ and the
slope of convergence along each state primitive directions
toward the goal is denoted by β . The corrective forces are
chosen to represent the definition of three modified forces by
their navigation function.

It should be noted that the navigation function ϕ(.)
consideration would have a high impact to save the
computation time and provides a compact type solution for
the generic multi-agent problem. Also λ denotes the weight
to specify the tracking of whichever state of separation r
or pair heading angles φ and θ is more important for a
particular trajectory to be shaped. For any arbitrary pair taken
within the multi-agent set, the error in azimuth and polar
states φ and θ are denoted by φ̃i j and θ̃i j, and get zero at
ψ = 0◦ or 90◦. However, these angles may spontaneously
generate undesirable possible maximum radial force that
would lead to a small steady error in separation state (for
further details refer to (Salehizadeh and Diller 2017b)). One
can simply compensate this small artifact by defining a
dead-zone D(.) over the azimuth and polar angle states with
a small width Γ around 0.5◦. The proposed F in (21) is a
periodic scalar-valued bivariate quadratic fitness function.
Given that our multi-agent problem is high dimensional
with a nonconvex fitness function, a real-time informed
gradient descent optimization solver is used for solving the
nonlinear relationship between input field orientation and
agents positions. To implement partial derivatives numerical
finite difference approximation is used.

3.6.2 Multiple global minima As shown in Fig. 3(A) to
(C), the inter-agent forces associated to a pair of agents are
periodic by 360 degrees. Though since our fitness function
in (21) utilizes the corrective force definition by taking into
account the state error sign, that modification yields symmetry
to the function; as such the period of the overall fitness
function will reduce to 180 degrees. This periodic property of
fitness function introduces multiple global minima solutions
which of course are equivalent. Our experimental observations
imply that rapid jumps between different global minima over
the period of 360 degrees at different time steps has positive
impact exceptionally for an underactuated tri-axial Helmholtz
coil system since the system singularities in the pulling force
generation can be improved by setting no bounds on the search
domain of the control angles. On the other hand, as a trade-off,
in practice agents have to magnetically reorient from past to
current solution angles. Thus, they would physically have
to sweep over intermediate range of angles which would
potentially generate undesirable forces. Therefore, in case of
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Fig. 6. Our experimental setup, structure and working principle of the microgripper is shown: (A) Two microgrippers are submerged
in glycerol inside the container located in the middle of a tri-axial Helmholtz coil. The 3D position of two microrobots is read via
top and side-view cameras. SEM and magneto-optical sensor image of the fully assembled microgripper are shown in (B) and (C),
respectively. In (C) red and blue gradient colors imply the positive and negative magnetic field strengths along the z-axis, respectively.
Magnetization profile of the microcripper from top and side views are illustrated in (D) and (E). Exploded drawing of microgripper
is shown in (F). From (G) to (I) different manipulation states of a microgripper are displayed. When magnetic field is absent, the
microgripper remains open, see (G). The microgripper closes once a magnetic field is applied along its central axis, see (H). And its
orientation is always aligned with the direction of the applied magnetic field, see (I).

a fully actuated coil system such as OctoMag, to achieve an
ideal performance and to reduce the jumps, it is recommended
to wrap the optimal solution angles to the fundamental period
of F function at 180 degrees.

4 System implementation

This section introduces the experimental setup and
fabrication methods to create spherical and gripper
microrobots.

4.1 Experimental setup
Magnetic fields for agent actuation are created in an

electromagnetic coil system with three pairs of coils nested
orthogonally to create fields in 3D, powered by three
pairs of analog servo drives (30A8, Advanced Motion
Controls) and controlled via a DAQ I/O board (Model 826,
Sensoray). Each pair of wire loops in the coil system is
arranged in Helmholtz configuration, resulting in a uniform
magnetic field up to 15 mT (uniform to within 5% of
nominal at the center over a workspace cube with the side
length of 5 cm) located at center of the coil system, see
Fig. 6(A). Agents’ positions are detected using two cameras
(FO134TC, FOculus) mounted atop and aside the workspace,
and a computer with custom C++ code finds each agent center
position using a Hough-circle/bounding-rect transforms in the
OpenCV library at 60 frames/second. To calibrate the camera
a linear triangulation of the two views is performed.

4.2 Fabrication of agents

4.2.1 Spherical agents The fabrication process of our
spherical agents which are illustrated in the right inset of
Fig. 6(A) are explained in detail in (Salehizadeh and Diller
2017b) under section 4.2, except, we combine the main
composite with hollow glass beads (3M Glass Bubbles K20)
at a mass ratio of 10:1 to make the agents neutrally buoyant for
the target fluid density. Owing to the high magnetic coercivity
of (MQFP-15-7-20065, NdPrFeB, Magnequench) magnetic
powders embedded in the magnetic agents (that is, 450 kA

m ),
these microrobots were not subject to demagnetization from
the relatively weak fields applied in this work.

4.2.2 Gripper agents We fabricated grippers to be utilized
as functional microrobot samples in this work based on our
previous papers (Zhang et al. 2018; Xu et al. 2019). The left
inset of Fig. 6(A) displays a pair of these agents floating inside
diluted glycerol solution. The SEM image of the gripper
with its backpack is captured in Fig. 6(B). We validated
the magnetic profile accuracy of the gripper by viewing
the distribution of the magnetic flux at sample surfaces
using a magneto-optical sensor (MagView S, Matesy GmbH)
shown in Fig. 6(C). These microgrippers are composed
of magnetic elastic polymers with embedded permanent
magnetic microparticles and are identical to those used
in (Zhang et al. 2018). Each microgripper is symmetric about
its center with nine magnetic blocks, one magnetic backpack,
and one nonmagnetic frame that links neighboring blocks
together, see Fig. 6(D) to (F). To lighten grippers we used
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Fig. 7. Experimental results showing path following of two magnetic microspheres in 3D using independent position control for two
examples: 1) line-shaped (A to C), and 2) ellipse-shaped formations (D to F). 3D position of two agents are sketched in (A) and (D). A
Snapshot of top and side-view frames of the workspace are shown at a specific time in (B) and (E) (noted at top right corner and also
marked by green circles in every subplots). The solid paths represents the desired paths. The dashed circle around each agent has
radius equal to 0.5rdes and indicates when two agents arrive at desired separations. The yellow circle associates to the moving goal
which is linearly constructed based on two subsequent original waypoint goals to ensure agents move straight toward goal as much as
possible. The time response tracking of the local states x̄local = [r φ θ ]> associated to the separation vector and local control inputs
ūlocal = [ψ α]> are illustrated in (C) and (F). Here the desired tracking signals are shown in red dashed lines. Video is available in
supplementary materials.

UV-cure glue to attach glass beads on top of backpack. The
working principle of the microgripper is described in the
caption of Fig. 6(G) to (I). The microgripper’s backpack has
a magnetic moment along the microgripper central axis. The
backpack is used to increase the net magnetic moment of
the whole microgripper, in order to enhance the magnetic
interactions between two microgrippers within the workspace.
Fabrication details can be found in our previous work (Zhang
et al. 2018).

5 Experimental Results
This section provides our 3D experimental demonstrations

implemented on a pair of spherical as well as functional
magnetic microgripping microrobots.

5.1 Independent motion control of two
magnetic microrobots

This section presents our path tracking result implemented
on two magnetic spherical particle microrobots in 3D. Fig. 7
shows the functionality of our magnetic team control through
the navigation of two magnetic spherical microrobots along
two paths: 1) line-shaped formation, and 2) ellipse-shaped
formation. The experimental 3D position of two magnetic
agents are sketched in Fig. 7(A) and (D) for the two
paths, while the path projections on top/side-view planes are
displayed. To compensate the gravity impact, we integrated
our P-controller with an integral action along the z-axis. A
snapshot of top and side-view frames of the workspace are
shown at a specific time in Fig. 7(B) and (E). The local
control input signals ψ and α are given by arrow indicators

on top-view windows. Also the 3D global uniform applied
field ba and the pulling force fP indicators are pictured with
respect to the 3D separation vector r, where one can infer the
behavior of system. The time response tracking of the local
states and local control inputs are graphed in Fig. 7(C) and
(F), which implies to a good agreement between the actual
and desired signal tracking.

For hard magnets the inter-agent forces are independent of
field strength assuming the alignment assumption is satisfied.
For soft magnets, the magnetization of the agents will be
field dependent, and so the inter-agent forces will be field
magnitude squared dependent. As such for soft magnets the
inter-agent forces can be weaker or stronger depending on the
material and the applied field. However, regardless of soft or
hard, as long as a strong input field with a constant magnitude
applies, the inter-agent force control would work because then
it would be only dependent on the orientation of the field.

The estimated controllable range of inter-agent separation
is scalable based on the agents characteristic body
radii R, obtained as (2.8R < r < 10R) to keep agents
mutually interactive through their field and avoid the
occurrence of overpower phenomena as discussed in
part 2.4. Despite the short range of pairwise separation
possible, many cooperative micromanipulation tasks such
as grasping, pushing, caging (Wang et al. 2018), microfluidic
microfactory (Yu et al. 2020), multiple cell trapping into
MEMS tool channels for parallel testing (Elhebeary and
Saif 2017), assembly and disassembly rely on independent
actuation within close proximity. The next section presents
one of these applications performed by functional microrobots
running parallel tasks, which is solved using inter-agent force
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Fig. 8. Experimental setup and results of two microgrippers picking and placing two cargoes in 3D. Two microgrippers and two
cargoes are submerged in Glycerol, which is monitored by two cameras from top and side views. A sequence of top and side-view
frames of the workspace is shown chronologically from (A) to (H) with the actuation mechanism noted. The local and global control
inputs indicators are provided with respect to the global pos of the separation vector at the bottom of each window. Video is available
in supplementary materials.

control. In case actuation over larger separations would be
desired which happens when agents get too far from each
other, the proposed actuation can always be combined with
other existing methods such as (Ongaro et al. 2019).

5.2 Demonstration: autonomous 3D cargo
delivery using two magnetic microgrippers

This experiment demonstrates the efficacy of the proposed
control scheme to independently and simultaneously position
two microgrippers to pick-and-place two cargoes.

5.2.1 Gripper motivation Here we chose microgrippers
as just one example of functional microrobots which their
special functional characteristics (i.e. gripping, or grasp and
release manipulation mechanism) can be integrated with our
inter-agent formation controller to do a complete cargo team
delivery task. An unconstrained rigid magnetic microgripper
has six free axes of which we can control three translational
axes and the opening/closing angle using the proposed
method. Thus, each individual gripper may have 4 actuated
DOFs.

5.2.2 Grippers team actuation An example on how our
inter-agent control technique can be employed for a team of
microgrippers to reliably perform cargo pick-and-place and
transportation tasks is shown in Fig. 8. The control task can
be classified into two layers as follows:

Upper layer — path planner The upper layer is
responsible to process the feedback information and decides
the next set of actions. The upper layer extracts and
triangulates the 3D present positions of the microgrippers
and cargoes from visual feedback, i.e., the real-time
frames captured by top and side-view cameras, using a
contour-finding algorithm from the OpenCV library. Then the
path planner uses these positions to calculate the next desired
positions for the two microgrippers. The path planner activates
the formation controller in the lower layer if the microgrippers
have not reached the designated positions, either the threshold
positions for grasping or the destinations for releasing.
The path planner processes the position information in the
global OXYZ coordinate, and convert it into the (r, φ , θ , Pc)
coordinates so that the formation controller recognizes it.
Overall, the upper layer path planner monitors the positions
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of the microgrippers and cargoes and decides the next action
of the microgrippers.

Lower layer — formation, grasp and release sequence
The lower layer is formed based on the information received
from the upper layer and synthesizes the appropriate global
magnetic field input ba to realize the request. In a clockwise
order, Fig. 8(A) displays two microgrippers which are initially
open in the absence of field. They get closed and aligned with
the applied field ba in (B) as soon as we turn on the field. The
microgrippers are lifted in order to avoid disturbing cargoes
in close proximity and therefore make grasping easier. The
formation controller is then engaged autonomously at this
point so that agents can adjust their positions locally through
their inter-agent forces and globally through the applied
magnetic field pulling action. Accordingly, the agents follow
the designated path moving toward cargoes (C). For secure
grasping, the inter-agent controller enables the microgrippers
to arrive close enough to cargoes within a certain threshold
distance away, see (D). When both microgrippers appear right
above their respective cargoes, the global magnetic field ba is
removed and triggered by a manual input. As a result, both
microgrippers open and descend, landing on the cargoes, see
(E). The timing of this action can be decided either by setting
a fixed time period, distance metric-based automatic tracking,
manual monitoring, or a combination of them which is used
in this work as a proof-of-concept.

In the following step, the microgrippers are then closed
by restoring the magnetic field ba without field gradient
to grasp cargoes, rotate from −z to +z, open, and then
close again, see (F). This re-grasping action lets the cargoes,
which are originally grasped by the tips of the microgrippers,
fall into the hug of the microgrippers for secure grasping,
reducing the possibility of losing cargoes during the following
transportation. After collecting cargoes, the inter-agent
formation control loop will be re-activated autonomously
so that grippers can carry cargoes toward the final destination,
see (G). Once the microgrippers arrive at the final destination,
the releasing sequence takes place simply by removing the
magnetic field ba and the microgrippers will both open to
release cargoes to their goal positions, see (H).

The underlying system has nonholonomic motion due to
the nonlinearity that exists in the generation of inter-agent
forces as well as the underactuated pulling action associated
to tri-axial Helmholtz coil system. Therefore, it is required
to prescribe the motion of two microgrippers to follow path
with intermediate moving goals (marked in yellow circles in
Fig. 8). These moving goals are linearly constructed based on
two subsequent original waypoint goals to avoid any sudden
jumps in agents’ motion.

The inter-agent force control method proposed in this paper
has full capability to accomplish an arbitrary 3D configuration
in close proximity. However, performing the 3D team cargo
delivery experiment may not be as straightforward as the 2D
one (Zhang et al. 2018) or the 3D one with particles, due to
the fact that microgrippers have larger size and mass than
individual particles. To succeed in the gripping experiment,
the maximum polar inter-agent force needs to be made
stronger than the apparent weight difference between each
pair of agents of the team. To enlarge the range of motion on
this demo, it just needs to make agents more neutrally buoyant
by adding glass beads on top of the grippers’ backpacks, and

increase the magnetization of each agent. Future research
could enhance the 3D performance further by studying the
dynamics of system to predict and avoid possible system
nonlinear perturbations due to fluid interaction and gravity.

5.3 Controllers performance assessment:
P-controller versus optimization-based
controller

As explained in section 3.6, we augmented the definition of
our inter-agent P-control method introduced in algorithm 1 in
the form of an optimization-based control method, potentially
capable to control more agents. This section will provide a
comparative study between the P-controller and the OBC
introduced in section 3.6. Video is available in supplementary
materials showing the comparison demo for both controllers.

To assess the performance of each controller, three trials
are executed whereby two agents follow a 3D path, which
projects to the University of Toronto initials “UT” at top-view
and a sharp corner line at side-view, as illustrated in Fig 9 (A)
and only sketched for the best trial associated with the OBC.
This image reflects how the paths are exactly seen through the
top and side cameras with different zoom scales and offsets
over the x-axis. The Root Mean Square error (RMS) between
positions of agents and their corresponding intermediate goal
waypoints is calculated. The study implies that the OBC
with RMS error of 141 µm (≈ one fifth of the agents’ body
diameter) slightly outperforms the P-controller with RMS
error of 165 µm. The OBC renders a smoother tracking
stability especially at sharp edges. The reason is that despite
the self-tuning P-controller, the controller is synthesized
based on a reference model including multiple regulator
parameters. One of these parameters is slope convergence
which patterns the motion of agents.

The corresponding time response of the local states
x̄local = [r φ θ ]T along with the control input angles ψ and α

are illustrated in Fig 9(B). The flipping behavior of these two
angles to maintain the separation vector at desired orientation
is evident. Last, Fig 9(C) illustrates how the gradient descent
algorithm chooses the steepest direction to find the downhill
global minimum traced in red-green dot sequence for the
candidate sample at t = 7s. The corresponding optimal angle
pair solution obtained by the OBC at (13.8◦,13.4◦) and
declared by red square leads to a smoother motion as supposed
to the near-optimal solution obtained by the P-controller at
(0◦,0◦) and declared by yellow diamond.

6 Discussions and Conclusions
We have introduced a method to achieve, for the first

time, independent position control of two functional magnetic
microrobots levitating in 3D. We accomplished this through
the use of magnetic inter-agent forces, which allows a team of
microrobots to get into desired formations even while sharing
a single global input magnetic field. The method was analyzed
through simulation and experimental results, and shown to be
viable to independently position each microrobot and move
along arbitrary trajectories. Experimental results showed
precise path following with two sets of microrobots including
spherical and functional microgrippers along arbitrary paths in
3D. The close-proximity control of magnetic microrobots can
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Fig. 9. Comparative study between optimization-based controller
and P-controller: (A) 3D experimental result of two agents
following a “UT” path at top-view and sharp corner line path
at side-view. For simplicity, only the result belonging to the
optimization-based controller is shown here. (B) Time response
tracking of the local states and control inputs (red and black
graphs refer to the desired and actual local state signals,
respectively). (C) Gradient descent steepest search (red-green
dot trace) utilized by the optimization algorithm to find the optimal
control inputs solution is shown at the candidate time of t = 7s and
marked by green circle in (B). This optimal solution corresponds
to the global minimum of the fitness function F marked by the
red square. For comparison, the near-optimal solution obtained
by the P-controller is also displayed by yellow diamond.

be used for localized targeted drug delivery and field-activated
medical devices.

We devised the method of inter-agent forces originally
for the motion control of mobile multi-agent system of
microrobots. Nevertheless, there are many design platforms
where the proposed inter-agent force actuation idea could
be applied to such as building a multi-model actuator by
constraining the reciprocating inter-agent motion in the
desired direction; for instance, one could use the radial
force in the design of 1-DOF prismatic translation slider
mechanism for drug injection or absorption (Salmanipour
and Diller 2018); or one could apply the inter-agent rotations
to enable team torque to be transduced to rotate a microvalve.
Particularly, the biomedical applications connected to this
work turns out to be in agreement with the emphasis on the
small size requirement that can be accomplished using our
method.

Given that our local inter-agent control law only relies
upon the orientation of the magnetic field, the technique can
be employed in combination with other magnetic actuation
methods using time sequences such as rotating or oscillating
magnetic fields, for example in swimming microrobots. One
could employ two microgrippers as if using two hands.

One limitation of the proposed method in this paper is
that the orientation of each microrobot cannot be controlled
independently. However, one can potentially study the
inter-agent forces between pairs of agents in an analogous way
to this work but for a more general case where an arbitrary
nonuniform field can be patterned across the workspace. Each
agent would then experience a slightly different field, and
hence the orientation of each agent could be programmed
independently in a predictive manner. In this respect, the
quantity of discrete magnetic generators inputs should be
chosen such that it maintains a full rank system matrix to
allow for independent actuation of all possible desired DOFs.
These field generator inputs could be either coil currents or
permanent magnets motion DOFs. To this end, at least 5×n
field generator inputs are needed for a pair of agents that can
be fully controlled in their pos, 3 for independent position
control and 2 for independent heading control associated to
each agent.

This study shows that even though the magnetic gradient
pulling action was constrained due to the coil design used, we
still were able to accomplish independent position control
of two microrobots using a common laboratory tri-axial
Helmholtz coil system readily available. Thus, it is expected to
get even better result by utilizing a fully actuated coil system
for a homogeneous field generation such as the Octomag
system.

Due to inertia-less behavior of our microrobots at low
Reynolds number environments, we did not analyze the
impact of dynamics in this study. A dynamic treatment of
the multi-agent system in close proximity that can adjust
the dynamics between one configuration to another is left as
future research. One can also utilize the presented framework
for soft-body (flexible) microrobots, where more DOFs can
result in features such as more advanced locomotion patterns.
Another avenue for future research is to explore the nonlinear
controllability of the internal states x̄local. To this end, the
problem could be formulated using Lie brackets to investigate
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the independent directions of motion based on the local
control inputs ψ and α .
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Appendix A. Stability proof
This appendix provides stability proof for the adaptive

P-controller applied to two-agent configuration in this paper.

A.1 Assumptions
1. The inertia is negligible for the underlying system.
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Fig. 10. Linear approximation of the radial force at the setpoint
x∗ = (r = rdes, ψ = 54.74◦, α = 54.74◦). For simplicity, only one
control angle axis is shown correponding to Fig. 3(A).

2. As the separation error increases, the P-controller will
be saturated converting to a bang-bang controller which
takes the highest convergence rate.

3. Using Taylor approximation, the nonlinear radial force
function can be replaced with a linear model up to the
saturation as illustrated in Fig. 10.

4. We model system to be time-invariant.

Here, our trajectory is a single setpoint and we aim
to prove that using P-controller the closed-loop system
will be globally asymptotically stable about the desired
setpoint at x∗ = (r = rdes, ψ = 54.74◦, α = 54.74◦) within
the interaction zone of the pair of agents. To this end,
Lyapunov’s direct stability method is applied to two system
models:

1. First-order ODE without inertia

2. Second-order dynamics including inertia

The dominant state we are concerned about is the separation
x = r. Without loss of generality, we consider the scaled
radial inter-agent force as the input to the system denoted by
u(ψ) =− fr

σ
=− Ω

σx4 [1−3cos2 ψ cos2 α] based on (4a). Now
let’s check out the stability for the two models:

A.2 First-order ODE without inertia
The closed-loop equation has the following form,

x4ẋ= u
′
(ψ), (22)

where u
′
= x4u.

Fig. 10 shows the feasibility to approximate the radial force
by a linear model at the setpoint to justify the usage of the
P-corrector. Hence, u

′
=−Ke, and K > 0 denotes the gain of

the P-controller.

Lemma 2. Using P-controller the closed-loop system (22)
is globally asymptotically stable at the setpoint x∗ within the
interaction zone of the pair of agents.
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Proof. Choose a positive definite quadratic Lyapunov’s
candidate as V (x̃) = 1

2 x̃T Kx̃, where x̃ = x− rdes. For the sake
of simplicity, here after we will represent x̃ by x. Then,

V̇ = ẋT Kx =−ẋT x4ẋ, (23)

will be negative semi-definite. Appeal to
LaSalle’s principle: find the largest invariant set
constrained in S = {(x, ẋ) : ẋ = 0}. Using eq. (22),
ẋ = 0→ Ke = 0→ x = 0. Therefore, the largest invariant set
is same as the setpoint. Consequently, the closed-loop system
is globally asymptotically stable at the setpoint x∗. The global
property is because V → ∞ as ‖x‖→ ∞. �

A.3 Second-order dynamics including inertia
We used Euler-Lagrange formula to derive the Hamiltonian

form of Newton’s equation for the underlying system given
as,

L(q, q̇) = T −U :
d
dt

∂L
∂ q̇
− ∂L

∂q
= τ (24)

where q̇ is the generalized velocity vector and τ = 2 fr−bṙ is
the generalized force including Rayleigh dissipation functions
which are magnetic and fluid drag friction (damping) forces
here.

Solving the above equation, it carries forward the
closed-loop equation as,

Mx4ẍ + b(ẋ,x)x4ẋ = u
′
(ψ), (25)

u
′
(ψ) = 1−3cos2(ψ)cos2(α).

Let u
′
(ψ) =−Ke =−Kx. Microagent’s mass and fluid drag

constant are denoted by M and b, respectively.

Lemma 3. Using P-controller the closed-loop system (25)
is globally asymptotically stable at the setpoint x∗ within the
interaction zone of the pair of agents.

Proof. We choose the total energy of the system as our
quadratic Lyapunov’s function as,

V (x, ẋ) =
1
2

ẋT Mx4ẋ+
1
2

xT Kx. (26)

The function V is positive definite and decresent. Let’s
calculate V̇ along trajectory 25. After some modifications
we will have,

V̇ =−ẋT bx4ẋ+
1
2

ẋT (Ṁx4 +4Mx3)ẋ, (27)

assuming Ṁ = 0, the second term on the right side
of eq. (27) is negligible against the first term because
the inertia is insignificant. Hence, V̇ = ẋT bx4ẋ≤ 0. Using
LaSalle’s principle similar to previous section one can
prove that the closed-loop system is globally asymptotically
stable at the setpoint x∗. The global property is because
V → ∞ as ‖x‖→ ∞.

One can make the same strategy above to prove Lyapunov
stability of the closed-loop system for the pair heading states
φ and θ , under the act of switching Relay nonlinear controller.
In this respect, the sinusoidal relation between the angular
forces and the control angles (see Fig. 3(B,C)) needs to be
approximated with a line around the set point. �

Appendix B. Index to Multimedia Extensions
The multimedia extensions to this article are at

http://www.ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video The single video file includes
physics-based animations and
experimental demonstrations.
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