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Abstract 

The actuation and control of miniature soft robots are challenging problems due to their limited onboard 

space and flexible bodies. Smart magnetic materials are promising candidates to address these 

challenges since they can be powered and guided remotely by magnetic field for functionalities such as 

swimming, grasping, and pumping. Here, we program an undulatory swimming gait into a small 

rectangular sheet that is made of a flexible magnetic homogeneous composite. The sheet bears a 

sinusoidal magnetization profile throughout its body and deforms into undulatory shapes in a rotating 

uniform magnetic field that aligns with its length. The traveling wave like deformation of the sheet 

interacts with the surrounding liquid and propels the sheet in a bidirectional non-holonomic swimming 

gait. Previous studies on this sheet were not able to model the deformation accurately or characterize the 

swimming systematically due to a lack of understanding of the underlying physical principles involved. 

For the first time, we develop a model from underlying physical principles to explain and predict the 

sheet deformation, which enables it to swim at air-water interfaces and generate propulsive forces under 

water with an additional stiff frame. The swimming capability and maneuverability of the millimeter-

scale sheet are demonstrated in experiments, and its swimming performances in various scenarios are 

characterized quantitatively. The soft swimming sheet can potentially be used for microrobotic tasks 

such as delivering cargo or transporting individual cells in poorly accessible workspaces. 
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1 Introduction 

 

Unlike conventional actuators and sensors that require specific components and structures, smart 

materials possess functionalities which are inherent to the materials themselves. These materials such as 

piezoelectric ceramics,1 shape memory alloy,2 electroactive polymers,3 and others are often used to 

induce motions from an input signal and have thus found use in areas like robotics, astronautics, and 

bioengineering. Recently, a smart magnetic composite has been demonstrated which consists of a 

flexible elastomer material with embedded magnetic microparticles.4 When the embedded magnetic 

particles are magnetized in a spatially-varying pattern, complex deformations can be produced from the 

composite by applying an actuating uniform magnetic field which creates magnetic moments within the 

composite.5–7 

 

Small-scale magnetic actuators have been proposed before, such as the artificial bacterial flagella 

presented by Zhang et al.8 Most existing small-scale magnetic actuators have distinct magnetic elements 

connected in one way or another. In contrast, this smart magnetic material, when used as an actuator in 

micro-scale robotics, can achieve motions like flexing9–11 and traveling wave swimming 

propulsion.4,12,13 These motions root from the magnetization that is programmed throughout the material 

volume, leading to simple mechanisms, where the behavior of a device is inherent to the programmed 

material. The creation of complex motions at the millimeter or smaller size scales is an ongoing 

challenge in the robotics community, which seeks to miniaturize the mechanism capabilities such as 

locomotion and manipulation possessed by larger robots. Introducing these functional materials into 

microrobotics opens new possibilities for device locomotion,4,14–16 cargo delivery,17–20 and microobject 

manipulation.10,11,21,22 These functional microrobots find a wide range of applications in biomedicine.23–

26 Magnetic actuation is appealing for these applications due to the ability of magnetic fields to penetrate 

most materials, its biocompatibility, and capacity to generate both forces and torques remotely and 

quickly. 



 

In the smart magnetic material studied here, permanent magnetic microparticles are embedded into an 

elastomer matrix, providing volumetrically-distributed forces and/or torques in the presence of an 

externally-applied magnetic field. These forces and torques deform the material in a predictable manner 

depending on the spatial magnetization profile of the magnetic particles within the material. If the 

magnetization profile can be arbitrarily patterned, there is a large reservoir of potential shape 

deformations of this soft magnetic composite and these deformations can be used to achieve desired 

micro-device functionalities. In previous works, microgrippers were built using this soft magnetic 

composite, whose shape change is employed to grip-and-release microobjects and assemble them into 

three dimensional (3D) structures,9–11,27 while other instances of actuating soft matter with magnetic 

torques were reviewed by Erb et al.28 Predicting and designing the shape of these devices have been 

explored under some conditions such as a beam bending under a fixed-free boundary condition.6 

 

Robotic swimming has been extensively studied at various size scales.6,29–31 The swimming of miniature 

robots is especially challenging due to the fact that time-reversible motions do not result in net 

propulsive forces (Purcell’s Scallop Theorem) and the limited onboard space of miniature robots which 

prevents them from carrying power or drive systems. Inspired by the vast variety of microorganisms, 

researchers have proposed several devices capable of the undulatory swimming gait, most of which are 

actuated by light.32–35 Mathematical analyses have suggested that the swimming speed is roughly 

proportional to the traveling wave frequency, the square of the wave amplitude, and the reciprocal of the 

wavelength.36,37 For a given input energy, a traveling sinusoidal wave is considered to be the optimal 

pattern for undulatory swimming. 

 

Previously, we have achieved the undulatory swimming gait on a soft magnetic sheet bearing a 

sinusoidal magnetization profile, proposed a phenomenologically derived shape model, and developed 

controllers for swimming speed and direction control.4,12,13 However, our previous studies did not 

explore the underlying physical principles of the sheet deformation, which was assumed to be a 

sinusoidal shape for simplicity. This sinusoidal deformation assumption did not allow previous works to 

explain why the sheet was unable to swim effectively underwater or propose a solution. 

 

Compared with direct magnetic pulling, this biomimetic undulatory swimming gait is not only 

scientifically interesting, but also possesses advantageous capabilities. For example, two undulatory 

swimming devices can be independently positioned on a two-dimensional (2D) plane and manipulated 

to follow uncoupled way-point sets.13 The swimming speed of such a sheet is shown to be up to 10 body 

lengths per second, about the same with direct pulling a uniformly magnetized sheet with similar sizes 

using the same setup. This speed is comparable with other mobile miniature devices, such as helical 

swimmers20 and biohybrid devices38. From a practical perspective, uniform magnetic fields are often 

easier to characterize and control than nonuniform magnetic fields, whether the field is created by 

electromagnetic coils or permanent magnets. In the community, the development of miniature 

locomotion strategies using uniform magnetic fields attracts significantly more attention than the direct 

pulling using magnetic field gradient. 

 

 

Hu et al. explored the multimodal locomotion of a similar soft magnetic sheet.7 They focused on 

controlling the sheet to exhibit various locomotion gaits, including swimming, walking, crawling, and 

jumping, in a hybrid liquid-solid environment. The undulatory swimming gait was employed when the 



sheet was at an air-water interface. In addition, a jellyfish-like time-symmetric motion was utilized to 

achieve under-water locomotion. Their presented model analyzed the sheet deformation in response to 

the magnetic torques induced by the applied magnetic field. However, this model is not suitable for on-

water undulatory swimming because, when the sheet is at an air-water interface, the surface tension 

force plays an non-negligible role in determining the sheet shape and cannot be omitted. 

 

In this work, we develop a deformation model from first principles, i.e., underlying physical principles, 

to describe the sheet behavior when it is located at an air-water interface. The model considers all 

pertinent factors and shows that the magnetic torques and the surface tension forces play the most and 

the second most important roles in deforming the swimmer, respectively. The sheet deformations in 

different scenarios are quantitatively characterized with respect to their similarities with traveling 

sinusoidal waves. Based on these results, we propose an under-water swimmer that generates propulsive 

forces inside water with time-irreversible deformation that approximates a traveling sinusoidal wave. We 

actuate and control the swimming of a soft magnetic sheet at an air-water interface. The sheet swims 

relying on the programmed magnetization in its material, while maintaining a simple body structure for 

easy scaling down for microrobotics tasks. The programmed magnetization profile on the sheet is 

measured for the first time. This work explores the undulatory swimming on a geometric simple 

magnetic sheet, which can be used in future soft robotic designs as end effectors or actuators. The 

analysis and modeling of the sheet shape from underlying physical principles provide insights into 

designing and achieving the undulatory swimming gait, which is time-irreversible and thus appropriate 

for the low Reynolds number regime. 

 

2 Swimmer Concept 

 

The swimming soft magnetic composite sheet is referred to as the swimmer hereafter. This paper 

investigates two kinds of swimmers, i.e., on-water swimmers and under-water swimmers, which work at 

air-water interfaces and under water, respectively. This section explains their concepts and working 

principles. 

 

2.1 On-Water Swimmer 

 

An on-water swimmer consists of a rectangular sheet of the homogeneous soft magnetic composite. It is 

constrained to a horizontal air-water interface by surface tensions. A sinusoidal magnetization profile is 

programmed throughout the swimmer body to endow the swimmer with the swimming ability. This 

magnetization profile is drawn in Fig. 1(a) and (b) and described by 

 �⃗⃗� (𝑥) = 𝑀 cos (
2𝜋𝑥

𝜆
) 𝑖̂ + 𝑀 sin (

2𝜋𝑥

𝜆
) �̂� (1) 

where 𝑀 is the magnetization amplitude (unit Ampere per meter), and 𝜆 is the sinusoidal wavelength 

(unit meter). Vector 𝑖̂ and �̂� are the unit vectors of axis 𝑥 and 𝑧 of the local coordinate frame, 

respectively. When a uniform magnetic field �⃗�  (unit Tesla), which does not exceed the magnetic particle 

coercivity, is applied, the swimmer experiences a volumetrically-distributed magnetic torque profile as 

 𝜏 (𝑥) = 𝐴 ∙ (�⃗⃗� (𝑥) × �⃗� ) = 𝐴 ∙ 𝑀 ∙ |�⃗� | ∙ sin 𝛽(𝑥) (2) 

where 𝐴 is the cross-sectional area of the swimmer (unit square meter), and 𝛽 is the angle between the 

magnetic field �⃗�  and the local magnetic moment of the swimmer. Note that 𝜏 (𝑥) has a unit of Newton 

because it is a profile along the length. The swimmer deforms under the combined effect of 𝜏  and the 



interface constraints, i.e., water surface tension and buoyancy. The constraints counteract 𝜏  and only 

allow the swimmer to deform slightly. The deformed shape of the swimmer varies with �⃗� , as illustrated 

in Fig. 1(c). When �⃗�  rotates around axis 𝑦, the swimmer shape changes correspondingly and forms a 

traveling wave like deformation along its body, generating propulsive forces to mobilize the swimmer 

into a bidirectional non-holonomic swimming gait, i.e., moving forward or backward but not sideward at 

an air-water interface. All on-water swimmers in this study have nominal dimensional values of 

4.50×1.50×0.10 mm3 or 2.00×1.00×0.03 mm3 (length, width, and thickness). 

 

 
Fig. 1: Concepts of on-water and under-water swimmers. A sinusoidal magnetization profile �⃗⃗� (𝑥) is programmed into the 

soft magnetic composite sheet. A schematic of �⃗⃗� (𝑠) and its projections into axis 𝑥 and 𝑧 are plotted in (a) and (b), 

respectively. The on-water swimmer, i.e., a sheet constrained at an air-water interface, deforms once a magnetic field �⃗�  is 

applied, see (c). The deformation is exaggerated for better visualization. An under-water swimmer is shown in (d). See the 

Supplementary Information for details of the under-water swimmer frame. 

 

 

2.2 Under-Water Swimmer 

 

The surface tension is the dominant reactive force that determines an on-water swimmer shape at air-

water interfaces. More importantly, the surface tension constrains the swimmer to the interface by 

preventing it from rolling or curling too much. Thus, the on-water swimmer stays at a horizontal plane 

and the applied magnetic field can be easily aligned with it to activate and control it. When the on-water 

swimmer is submerged in water and the surface tension is absent, it curls and rolls easily in the three-

dimensional (3D) space, causing troubles in aligning the applied magnetic field with it. Even when this 

alignment is achieved, the swimmer deformation profiles in a rotating uniform magnetic field deviate 

from traveling wave shapes remarkably, deteriorating its swimming performance. 

 

To achieve good under-water swimming, an under-water swimmer is formed by fixing the ends of an on-

water swimmer on a stiff frame, which generates a fixed-fixed boundary condition for the central soft 

magnetic composite sheet. Although the fixed-fixed boundary condition is different with the one caused 

by the surface tension, it serves the same purpose and creates similar effects on constraining the soft 

sheet. A photograph of the under-water swimmer is shown in Fig. 1(d). With this frame, the under-water 

swimmer does not curl and is less likely to roll in the 3D space. But, this frame also impedes the sheet 

deformation that is essential for the desired propulsion. Thus, the frame is configured to be slightly 

shorter than the sheet to alleviate this impediment. An approximate traveling wave like shapes are 

observed along the under-water swimmer sheet in the presence of a rotating uniform magnetic field. All 

under-water swimmers have nominal dimensional values of 2.2×2.1×0.03 mm3. 

 



2.3 Functional Soft Magnetic Composite Material for Swimming 

 

The swimmers are made of a rectangular sheet of a soft magnetic composite and a stiff frame (only for 

under-water swimmers). The composite is formed by embedding permanent magnetic microparticles 

into elastomer matrices. These microparticles bear a programmed sinusoidal magnetization profile 

throughout the sheet and provide volumetrically-distributed torques in the presence of an externally-

applied magnetic field. Under the combined effect of magnetic torques and the constraints provided by 

either surface tension and buoyancy forces or a stiff frame, the sheet deforms into traveling wave like 

shapes and interacts with the surrounding liquid to generate propulsive forces. 

 

The fabrication of this soft magnetic composite sheet has three steps: defining geometries by 

photolithography (detailed in the Supplementary Information, Fig. S1), replica molding to obtain the 

sheet, and programming the magnetization profile. An elastic polymer (Ecoflex 0050, Smooth-On) was 

uniformly mixed with permanent magnetic microparticles (MQFP-15-7, NdPrFeB, Magnequench) at 1:1 

mass ratio. This mass ratio provides a good balance between the magnetization strength and the material 

stiffness. This magnetic slurry was then poured into a negative sheet mold. A razor blade scraped away 

excess materials. This polymeric mixture cured inside the mold, forming the desired soft magnetic 

composite sheet. The cured sheet was taken out from the mold manually using a tweezer, wrapped 

around a cylindrical wire, and magnetized in a uniform magnetic field of 1.1 T created by two 

permanent magnets (1 inch cube, NdFeB, N40, Magnet4US). The last step programmed a sinusoidal 

magnetization profile �⃗⃗� (𝑠) throughout the sheet, enabling it to deform into undulatory motions in a 

rotating uniform magnetic field. This fabrication process is illustrated in Fig. 2. The sheet has a simple 

structure and is made of homogeneous materials, making itself easy and cost-effective to fabricate. 

Without any complicated body structures or patterns, the swimmers should also be convenient to 

fabricate on the micron scale. An under-water swimmer needs an additional stiff frame. An ultra-low 

viscosity casting resins (Smooth-Cast 310, Smooth-On) was poured into the negative mold and excess 

resins were scraped off by a razor blade, see Fig. 2(d). The resins cured into a single piece of stiff solid 

frame, which was taken out manually using tweezers. In the last step, the magnetized sheet was 

manually glued to the frame with an initial curvature using the liquid plastic (Smooth-Cast 310, Smooth-

On), see Fig. 2(f). 

 
Fig. 2: Fabrication of the soft magnetic composite 

sheet and the stiff frame. The mixture of a polymer 

and permanent magnetic particles were poured into 

the sheet mold, and scraped by a razor blade in (a). 

After curing, the sheet was magnetized in (b) to 

program a sinusoidal magnetization profile into its 

body. As a result, the sheet deforms in an applied 

magnetic field �⃗� , see (c). A liquid plastic was 

poured into the soft rubber mold for the frame, and 

scraped to remove the excess amount, see (d). The 

plastic cured into the stiff frame, whose rendering is 

shown in (e). The two ends of the soft magnetic 

sheet were dipped in the liquid plastic and pressed 

on the frame to attach itself. 
 

To verify the resultant magnetization profile �⃗⃗� (𝑠) along the sheet is indeed a sinusoidal shape, the 

magnetized sheet was placed on a sensor (cmos-magview S, Matesy GmbH - Magnetic Technologies 



and Systems) that measures the normal component of a magnetic field. The measurement was then 

compared with the predictions made by a magnetic dipole-based model using a custom script developed 

on Matlab. The two sets of data show a convincing similarity with each other, proving that a sinusoidal 

magnetization profile �⃗⃗� (𝑠) was created as expected. The results of this verification are presented in 

Fig. 3.  

 

 
Fig. 3: Measurement and prediction of the magnetic field near the magnetized sheet. The magnetic field on the middle 𝑥-𝑧 

plane of the sheet is simulated and its magnitude is color coded in (a). The magnetic field lines are plotted qualitatively. The 

green rectangle represents a square of 0.15 mm in size. Note the scales for axis 𝑥 and 𝑦 are different for better visibility. 

Measurements were taken at plane i and ii and shown in (b) and (c), respectively. Data on line 1 and 2 are compared with 

simulation results in (d) and (e), respectively. 

 

 

3 Results and discussions 

 

3.1 On-Water Swimming 

 

This subsection models the swimmer shapes and characterizes the swimming performance in one of its 

working scenarios, i.e., on-water swimming. An autonomous path-following experiment is presented to 

demonstrate the maneuverability of on-water swimmers. 

 

3.1.1 Force Analysis and Swimmer Shape Model 

 

Here, the shape of an on-water swimmer in uniform magnetic fields is modeled based on the Euler-

Bernoulli beam theory from underlying physical principles. With all pertinent parameters measured 

independently, the predicted shapes in varying magnetic fields show a favorable agreement with the 

corresponding experimental observations. 

 

When a magnetic field is absent, a swimmer (length 𝐿, width 𝑊, and thickness 𝑇) at an air-water 

interface experiences gravity, buoyancy, and surface tension. At this state, the swimmer exhibits 

negligible deformation due to its low gravity and density values. Thus, it is assumed without much loss 

of accuracy that the swimmer has zero gravity, and it remains flat and does not disturb the air-water 

interface when no magnetic field is applied. Applying a magnetic field �⃗�  causes a magnetic torque 

profile 𝜏 (𝑥) that is described by Eq. (2) and the swimmer deforms as a result. Since the swimmer rests 

on the air-water interface, its deformation interferes with the water surface and causes the surface 

tension 𝐹 𝑡 and the buoyancy 𝐹 𝑏 on it to change correspondingly. Moreover, the relative angle 𝛽 between 



�⃗⃗� (𝑥) and �⃗�  changes as the swimmer deforms. Thus, the swimmer deformation converges to a shape 

that balances the internal shear forces and the external forces and torques. 

 

As a convention, the positive direction of torques and forces are defined to be counterclockwise (from 

+𝑥 to +𝑧) and upward (+𝑧), respectively. The swimmer does not deform along its width, i.e., axis 𝑦, 

and its shape is fully described by a shape profile 𝜔(𝑠) (𝑠 ∈[0, 𝐿]) in the 𝑥-𝑧 plane. The value of 𝜔(𝑠) is 

obtained by subtracting the height of the undisturbed water surface from the height of the swimmer 

bottom surface. The coordinate 𝑠 is defined along the swimmer body and coincides with axis 𝑥 when the 

swimmer is undeformed. 

 

The forces and torques on the swimmer are schematically illustrated in Fig. 4. Within the scenario 

discussed here, the swimmer deformation 𝜔 is always smaller than one tenth of its length 𝐿. Thus, the 

buoyancy 𝐹 𝑏 is considered to be always along axis 𝑧 and its distribution 𝐹 𝑏(𝑠) with a unit of Newton per 

meter is calculated by 

 𝐹 𝑏(𝑠) = 𝜌𝑔𝑊 ∙ 𝜔(𝑠) (3) 

where 𝜌 is the water density (1000 kg/m3), 𝑔 is the gravitational acceleration constant (9.8 m/s2), and 

𝑊 is the swimmer width in meter. The surface tension 𝐹 𝑡 exists at the boundary of the contact area 

between the swimmer and the water. The direction of 𝐹 𝑡 is along the disturbed water surface and 

perpendicular to the boundary, forming an angle 𝜃𝑡 with the horizontal plane. The 𝐹 𝑡 along the swimmer 

length and width are denoted by 𝐹 t, len and 𝐹 t, wid, respectively. The horizontal component of 𝐹 t, len points 

along axis 𝑦 and does not affect the swimmer shape 𝜔 in the 𝑥-𝑧 plane. The vertical component of 𝐹 t, len, 

i.e., 𝐹 t, len, v, and 𝐹 t, wid are relevant with 𝜔 and computed correspondingly as 

 𝐹t, len, v(𝑠)|𝑠∈[0,𝐿] = 2𝛾 sin 𝜃𝑡
(𝑠) (4) 

 𝐹t, wid, v(𝑠)|𝑠⊂[0,𝐿] = 𝛾𝑊 sin 𝜃𝑡(𝑠) (5) 

and 

 𝐹t, wid, h(𝑠)|𝑠⊂[0,𝐿] = 𝛾𝑊 cos 𝜃𝑡(𝑠) (6) 

respectively. The constant 𝛾 is the surface tension coefficient (0.072 N/m for an air-water interface). The 

force profile 𝐹t, len, v(𝑠) has a coefficient of 2 because both long edges of the swimmer experience the 

surface tension forces with the same vertical components. Note that 𝐹t, len, v(𝑠) has a unit of Newton per 

meter while 𝐹t, wid, v(𝑠) and 𝐹t, wid, h(𝑠) have a unit of Newton. This difference is because 𝐹t, len, v(𝑠) is a 

force profile but 𝐹t, wid, v(𝑠) and 𝐹t, wid, h(𝑠) are force components. 



Fig. 4: On-water swimmer shape 

definition and the forces and 

torques it experiences. The 

swimmer shape is described by 𝜔 

and defined in (a). The swimmer 

deforms when a magnetic field is 

applied and interacts with the water 

surface. The forces and torques 

applied on the swimmer when it 

deforms are qualitatively drawn in 

the top view, cross-sectional view, 

and side view in (b), (c), and (d), 

respectively. The surface tension 

applied along the swimmer length 

is not shown in (d) for better 

visibility. The arrow sizes do not 

represent the corresponding force 

magnitudes. 
 

 

 

 

 

 

 

 

 

 

The total bending moment 𝑄(𝑠) on the swimmer body is 

 𝑄(𝑠) = 𝑄𝜏(𝑠) + 𝑄𝑏(𝑠) + 𝑄𝑡(𝑠) (7) 

where 𝑄𝜏(𝑠), 𝑄𝑡(𝑠) and 𝑄𝑏(𝑠) are the bending moment caused by the magnetic torque 𝜏 , surface tension 

𝐹 𝑡, and buoyancy 𝐹 𝑏, respectively, and they can be calculated using the relationship between the load, 

shear force, and bending moment on a beam. The bending moment 𝑄𝜏 and 𝑄𝑏 are computed as 

 𝑄𝜏(𝑠) = −∫ 𝜏(�̃�)d�̃�
𝑠

0

 (8) 

and 

 𝑄𝑏(𝑠) = ∫ 𝐹𝑏(�̃�) ∙ (𝑠 − �̃�)d�̃�
𝑠

0

 (9) 

respectively. The dummy variable �̃� is a placeholder and disappears completely in final results. The 

bending moment 𝑄𝑡 is further divided into 

 𝑄𝑡(𝑠) = 𝑄t, len, v(𝑠) + 𝑄t, wid, v(𝑠) + 𝑄t, wid, h(𝑠) (10) 

where 𝑄t, len, v, 𝑄t, wid, v, and 𝑄t, wid, h are caused by 𝐹t, len, v, 𝐹t, wid, v, and 𝐹t, wid, h, respectively. The 

expressions for these terms are 

 𝑄t, len, v(𝑠) = ∫ 𝐹t, len, v(�̃�) ∙ (𝑠 − �̃�)d�̃�
𝑠

0

 (11) 

 𝑄t, wid, v(𝑠) = 𝐹t, wid, v ∙ 𝑠 (12) 

and 

 𝑄t, wid, h = 𝐹t, wid, h ∙ (𝜔(𝑠) − 𝜔(0)) (13) 



 

As mentioned before , the swimmer deformation 𝜔 is always smaller than one tenth of its length 𝐿, 

satisfying the ‘small deformation’ assumption of the Euler-Bernoulli beam theory. Thus, the curvature 𝜅 

of the swimmer body is related to its bending moment 𝑄 using the Euler-Bernoulli beam theory as 

 𝜅(𝑠) = 𝑄(𝑠) ∙ (𝐸𝐼)−1 (14) 

where 𝐸 and 𝐼 = 𝑊𝑇3 12⁄  are the Young's modulus and the second moment of area of the swimmer 

sheet, respectively. Finally, the swimmer shape profile 𝜔(𝑠) can be derived from its curvature profile 

𝜅(𝑠). 
 

3.1.2 Parameter Measurement 

 

The parameters relevant to the proposed swimmer shape model were measured independently, to 

theoretically predict the swimmer shapes from underlying physical principles and verify the model 

efficacy by comparing predictions against observations. This specific swimmer had dimensional values 

of 4.47×1.33×0.109 mm3 (length, width, and thickness). The length and width were measured using a 

caliper (Starrett, resolution 0.01 mm) and the thickness was measured by a micrometer (Mitutoyo, 

resolution 0.001 mm). The applied magnetic field in the shape observation experiment had a strength of 

10 mT, which was verified by a gaussmeter (Model 425, LakeShore). 

 

The swimmer magnetization could not be measured directly because its direction varied along the body. 

Thus, eight cubes with a side length of 3.1 mm were made of the soft magnetic composite that was used 

by the swimmer. These cubes were magnetized in the same magnetizing setup with the swimmer, and 

then glued into a larger cube that exhibits a stronger overall magnetic moment. The magnetic field of the 

larger cube was measured using the gaussmeter at several known distances from the cube. The obtained 

data was fitted to a magnetic dipole model to estimate the magnetic moment. A magnetization value was 

obtained by dividing the magnetic moment by the total volume of the cube. The obtained magnetization 

value of the cube was assumed to be identical with the swimmer magnetization, because they shared the 

same material and went through the same magnetization process. The magnitude of magnetization of the 

soft magnetic composite was measured to be 45 kA/m. 

 

Another parameter that needed to be measured is the Young’s modulus 𝐸 of the sheet. In the 

measurement, a sheet was fixed by one end and leaving the other one free. A micro-force sensing probe 

(FT-S100 probe, FemtoTools) applied a point force on the sheet to bend it, mimicking the sheet 

deformation when it swims. The value of 𝐸 = 0.165 MPa was derived from the recorded values of the 

force amplitude and corresponding deformation. More details about this measurement can be found in 

the Supplementary Information. 

 

3.1.3 Numerical Simulation of Swimmer Shapes 

 

With the proposed shape model and the measured parameter values, there is only one problem left to be 

addressed before the swimmer shape can be simulated from first principles: The swimmer has sharp 

edges, whose interaction with the water surface is complex and hinders the analysis of the surface 

tension 𝐹 𝑡 (Fig. 5(a)). A vertical swimmer edge is described as a combination of a straight line segment 

and two quadrants (radius 𝑟 ≥ 0) at both ends. When the water-air-swimmer (WAS) intersection is 

within the quadrant region, the surface tension angle 𝜃𝑡 is related to the contact angle 𝜃𝑐 and the 

submerge angle 𝛿 as 𝜃𝑡 = 𝜃𝑐 + 𝛿 − 𝜋. The value of 𝜃𝑡 increases with 𝛿 as the swimmer goes further 



down into the water until the WAS intersection moves into the line segment region, where 𝜃𝑡 is constant 

and 𝜃𝑡 = 𝜃𝑐 − 𝜋 2⁄ . Since the swimmer thickness 𝑇 is small compared with its other dimensions and 

deformation magnitude, the thickness 𝑇 is neglected in the calculation of the swimmer shape 𝜔 and the 

swimmer edge is approximated as a hemisphere with infinitesimal radius, i.e., 𝑟 → 0. As a result, the 

value of 𝜃𝑡 varies with 𝜔, while the WAS intersection remains at the same spot on the swimmer. 

 
Fig. 5: The sharp edge problem of 

the swimmer and its treatment. A 

sharp swimmer edge is 

represented by the combination of 

a line segment and two quadrants 

with radius 𝑟. When its thickness 

is ignored, the swimmer edge is 

approximated as a hemisphere, 

see (a). The dashed curves 

represent the different water 

surface profiles for varying 

intersection locations. Different 

water surface profiles ℎ are 

plotted in (b) when the surface 

tension angle 𝜃𝑡 at the swimmer 

edge varies. The values of 𝜃𝑡 are 

shown in (c) with respect to 

different swimmer edge positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An air-water interface disturbed by a hemisphere has been described by Song et al.39 based on the 

Young-Laplace equation as 



 𝜌𝑔ℎ(𝑥) = 𝛾 ∙

(

 
 
 d2

d𝑥2
ℎ(𝑥)

(1 + (
d
d𝑥
ℎ(𝑥))

2

)

1.5

)

 
 
 

 (15) 

where ℎ(𝑥) is the air-water interface profile and other symbols have already been defined. Their work 

assumed that the cylinder is infinitely long, which is not true for the swimmer and may potentially 

impair the simulation accuracy using Eq. (15). Taking the WAS intersection as the origin of axis 𝑥, the 

boundary conditions for Eq. (15) are dℎ(0) d𝑥⁄ = tan𝜃𝑡 , ℎ(∞) = 0, and dℎ(∞) d𝑥⁄ = 0. As suggested 

by Song et al.,39 only the first two boundary conditions are used in the numerical calculation of ℎ, whose 

result will automatically satisfy the last condition. In addition, ℎ(∞) is evaluated at 𝑥 = 0.02 m to 

approximate the case at 𝑥 = ∞. Numerically solving Eq. (15) using Matlab, the water surface profile ℎ 

is obtained for different surface tension angles 𝜃𝑡, see Fig. 5(b). The value of 𝜃𝑡 is plotted against the 

depth of the WAS intersection ℎ(0) in Fig. 5(c). A least-squares regression of the data yields the 

following relationship with a coefficient of determination of 0.9994: 

 𝜃𝑡 = 7.652 × 10
−6 − 3.847 × 102ℎ(0) (16) 

At any specific boundary point of the swimmer, the swimmer deformation equals the WAS interaction 

depth, i.e., 𝜔(𝑠) = ℎ(0). Therefore, the one-to-one mapping between ℎ(0) and 𝜃𝑡 built by Eq. (16) 

enables the calculation of 𝐹t. len. v(𝑠), 𝐹t. wid. v(𝑠), and 𝐹t. wid. h(𝑠) when 𝜔(𝑠) is known. Note that the 

contact angle 𝜃𝑐 is not involved in this calculation process. The contact angle 𝜃𝑐 only affected the 

position of the WAS intersection on the swimmer edge, which was irrelevant since the swimmer 

thickness 𝑇 has been ignored. 

 

Since the forces and torques on the swimmer vary with the swimmer shape 𝜔, 𝜔 cannot be analytically 

solved and its value can only be obtained by iterative numerical calculations until a convergence is 

achieved. Thus, an iterative numerical algorithm was built using Matlab to predict 𝜔 in various magnetic 

fields from first principles. The algorithm consists of the following steps. (1). Initialize the simulation: 

define the simulation points along the swimmer, the iteration step size, and the convergence tolerance. 

(2). Gather the known parameters: specify the swimmer dimension values, the magnetization, the 

Young's modulus, and the strength and direction of the applied magnetic field. (3). Calculate the forces 

and torques on the swimmer using the swimmer current shape 𝜔cur and Eq. (2-6). (4). Obtain the 

swimmer curvature 𝜅 using Eq. (7-14). (5). Divide the variation in 𝜅 by the iteration step size and then 

use it to get the swimmer new shape 𝜔new. (6). Calculate the forces and torques on the swimmer, 

excluding magnetic torques, using 𝜔new, and then rotate and/or vertically move 𝜔new until the forces and 

torques balance each other. (7). Set 𝜔cur = 𝜔new, and repeat step (3-7) until the change in 𝜔 between 

iterations is smaller than the convergence tolerance. A pseudocode is provided in the Supplementary 

Information to further explain the algorithm. 

 

3.1.4 Experimental Swimmer Shape Observations 

 

This specific swimmer was placed at an air-water interface within a uniform magnetic field, which was 

created by a custom-built two-dimensional (2D) electromagnetic coil system (Fig. 6(a)). The field 

direction was varied to form different angles with the length of the swimmer in the same plane. In each 

case, the swimmer shape was observed and compared against the corresponding theoretical prediction, 

to evaluate the efficacy of the proposed model and simulation algorithm. Once applied, the magnetic 



field rotated the swimmer horizontally to a certain orientation, because the swimmer has a nonzero net 

magnetic moment. A camera (IL3, Fastec Imaging) mounted at a tilting angle 𝜙 = 43° captured this 

rotation at 1000 frames per second. The swimmer shape was extracted from the frame in which the 

swimmer length was coplanar with the magnetic field. If the camera observed the swimmer from a side-

view perspective without tilting, the part of swimmer that deformed downwards would be blocked by 

the water surface and therefore its deformation profile could not be accurately extracted. The tilted 

camera could record the complete swimmer shape without interference. However, the extracted 

swimmer shapes were distorted by the tilting angle, see Fig. 6(b). This distorted swimmer shape profile 

was corrected as 𝜔cor(𝑠) = 𝜔obs(𝑠) cos𝜙⁄ . 

 
Fig. 6: The setup and 

schematics for observing the 

on-water swimmer shape. The 

2D coil system and the camera 

are shown in (a). The insets 

show the camera tilting angle 

and swimmer sample at the 

center of the coil system. The 

image captured by the camera 

is distorted by the tilting angle, 

see (b). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angle between the swimmer and the applied magnetic field varied from 0° to 315° at an interval of 

45°. Frames showing the swimmer in the magnetic field with different directions are presented in Fig. 7. 

The corrected swimmer shape profiles 𝜔cor(𝑠) are plotted together with the theoretical predictions 

beneath corresponding frames. Since the swimmer was observed from a tilting angle, the water surface 

filled the whole field of view as a plane, instead of a line when it was observed from the side. As a 

result, the height of the swimmer with respect to the undisturbed water surface could not be determined. 

To enable the swimmer shape comparison, the average vertical position of each 𝜔cor(𝑠) was adjusted to 

match the average of its corresponding predicted profile. Then the root-mean-square-deviation (RMSD) 

between the two profiles were calculated and given in each frame. The average RMSD value, i.e., 

46.3 𝜇m, is only 1% of the magnitude of the swimmer length, i.e., 4.47 mm, and about 10% of the 

swimmer peak-to-peak deformation, which is around 500 𝜇𝑚. The low values of the RMSD suggest a 

good agreement between the theoretical predictions and the experimental observations of the swimmer 



shape, which further endorse the efficacy of the proposed model and simulation algorithm. These 

nonzero RMSD values could be ascribed to the ignorance of the swimmer thickness 𝑇, the aberration in 

using Eq. (15) while the swimmer is not infinitely long, and the tolerances in parameter measurements. 

 

 
Fig. 7: A comparison between experimental and theoretical swimmer shapes in a magnetic field with varying directions. Dots 

represent the experimental swimmer shape 𝜔cor, which was automatically extracted from captured frames and corrected by 

the tilting angle 𝜙 using a Matlab script. Curves show the predicted swimmer shapes. The arrows denote the directions of the 

applied 10 mT magnetic field. The RMSD value is given, which stands for the root-mean-square-deviation between the 

theoretical and the experimental swimmer shapes. Each tick of the abscissa and ordinate is 500 𝜇m. 

 

3.1.5 Swimming Demonstration and Characterization 

 

When an on-water swimmer receives a rotating uniform magnetic field, i.e., the actuation field �⃗� 𝑎, in its 

𝑥-𝑧 plane, it deforms into traveling wave like profiles and swims along its axis 𝑥. As discussed in our 

previous work,12,13 a small steering magnetic field �⃗� 𝑠 in the 𝑥-𝑦 plane needs to be applied along the 

swimmer net magnetic moment to ensure that �⃗� 𝑎 remains in the 𝑥-𝑧 plane of the swimmer. The addition 

of �⃗� 𝑠 shifts the overall magnetic field, making its component along one direction larger than the ones 

along other directions. Consequently, the swimmer experiences a net torque over time that aligns the 

swimmer with the designated direction. Without �⃗� 𝑠, there are torques with equal amplitudes that try to 

align the swimmer with opposite directions, causing the swimmer to oscillate or even rotate with 

uncontrolled moving direction. 

 

Using two fields requires a 3D electromagnetic coil system, whose workspace can only be observed 

from its top or side. A video of an on-water swimmer swimming within the 3D coil system is shown in 

Movie 1. The swimmer profiles cannot be extracted accurately from sideview observations. 

 

To clearly measure the swimmer deformation while it swims, an on-water swimmer was re-magnetized 

slightly by moving a permanent magnet close to it, to obtain a net magnetic moment along its axis 𝑥. In 

this way, �⃗� 𝑠 is coplanar with �⃗� 𝑎 and can be generated by the 2D coil system in Fig. 6. More details 

about how the two magnetic fields cooperate to propel and directionally control the swimmer can be 

found in our previous work.12 

 

The swimmer was placed at an air-water interface and activated by �⃗� 𝑎 of 9 mT rotating at 40 Hz, while 



�⃗� 𝑠 is along the swimmer length (axis 𝑥) with a magnitude of 2 mT. The swimmer was filmed at 800 Hz 

using the setup shown in Fig. 6 with a camera tilting angle 𝜙 = 45°, and the video is shown in Movie 2. 

A quantification of the similarity between the swimmer deformation and a traveling sinusoidal wave 

(TSW) provides a useful index for comparing the swimming performance of different swimmers in 

various scenarios. 

 

First, the traveling wave component (TWC) of the swimmer deformation was obtained in following 

steps. The swimmer shape profile 𝜔(𝑠) was extracted from captured frames and corrected by the tilting 

angle. Then, it was decomposed into a Fourier series and only the first order terms were kept as 

 𝜔(𝑠) ≈ 𝐶 + 𝑎 cos(2𝜋𝑠 ⋅ 𝐿−1) + 𝑏 sin(2𝜋𝑠 ⋅ 𝐿−1) (17) 

where 𝐶 is a constant, and 𝑎 and 𝑏 are the first-order Fourier coefficients. The standard expression of a 

TSW is 

 �̃�(𝑠) = �̃� sin (
2𝜋𝑠

𝐿
+ �̃�(𝑡)) = �̃� (cos

2𝜋𝑠

𝐿
sin �̃�(𝑡) + sin

2𝜋𝑠

𝐿
cos �̃�(𝑡)) (18) 

where �̃�(𝑠) is the displacement, �̃� is the magnitude, and �̃� = (−𝜋, 𝜋] is the phase angle. Equating 

Eq. (17) and (18) derives that 𝑎 = �̃� sin �̃� and 𝑏 = �̃� cos �̃�. Thus, the amplitude and phase angle of the 

TWC are 

 𝑅 = √𝑎2 + 𝑏2 (19) 

and 

 𝜑 = tan−1(𝑎 ⋅ 𝑏−1) (20) 

respectively. Thus, the amplitude 𝑅 and phase angle 𝜑 of the TWC in a swimmer profile 𝜔(𝑠) can be 

obtained using Eq. (17), (19) and (20). The obtained 𝑅 and 𝜑 from 10 frames in one rotation of �⃗� 𝑎 are 

plotted in a polar coordinate frame in Fig. 8(a). Each data point represents a TWC vector with the 

information of an amplitude 𝑅 and a phase angle 𝜑. 

 

 
Fig. 8: Results of the TWC analysis of an on-water swimmer. The swimmer has dimensional values of 4.59×1.31×0.106 

mm3, and was activated by a uniform magnetic field of 9 mT rotating at 40 Hz. A 2 mT steering field was added to maintain 

the swimmer orientation, causing the overall field to shift, as shown by the solid circle in (a). The TWC vectors extracted 

from observed swimmer profiles are plotted in (a). The dashed circle is the equivalent circle. The corresponding theoretical 

results of the swimmer in the same rotating uniform magnetic field with no steering field are plotted in (b). 



 

Rotate all these TWC vectors in the polar coordinate frame along the phase propagation direction, i.e., 

counter-clockwise, until they meet their immediate following vectors. The area swept by these TWC 

vectors is 

 𝑆swp =∑(𝜋𝑅𝑖
2 ⋅
Δ𝜑𝑖
2𝜋
)

10

1

 (21) 

where Δ𝜑𝑖 ∈ (0, 𝜋) is the phase angle difference between TWC vector 𝑖 + 1 and 𝑖. When 𝑖 = 10, Δ𝜑𝑖 is 

calculated between TWC vector 1 (the first one) and 10 (the last one). Note that 𝑆swp is not the gray 

region in Fig. 8. A circle with its area equal to 𝑆swp is named as the equivalent circle. The radius length 

of the equivalent circle represents the swimming amplitude, meaning that a TSW with the same 

swimming amplitude will lie exactly on the equivalent circle in the polar coordinate frame. To 

compensate the swimming magnitude variation between swimmers of different length, the equivalent 

circle radius is normalized with respect to the swimmer length 𝐿, resulting in a variable named the 

normalized swimming amplitude 𝑅nor as 

 𝑅nor = √𝑆swp ⋅ 𝜋−1 ⋅ 𝐿
−1 (22) 

A large 𝑅nor value means big swimming deformation magnitude that causes strong propulsive forces. 

 

As mentioned before, a TSW with the same swimming amplitude exactly fills the equivalent circle. 

Thus, the overlapped area between the region swept by the TWC vectors and the equivalent circle 

describes the spatial difference between the swimmer deformation and a TSW. This area is referred to as 

𝑆ovlp and normalized with respect to 𝑆swp, resulting in a variable named as the circularity 𝜖 that is 

computed as 

 𝜖 = 𝑆ovlp ⋅ 𝑆swp
−1

 (23) 

The phase angle of a TSW changes at a constant rate. Taking ten measurements within each �⃗� 𝑎 rotation 

period, the phase angle difference between two measurements of a TSW is 𝜋 5⁄  and has zero variation. 

The standard deviation of the experimental phase angle differences Δ𝜑𝑖 was calculated and normalized 

to characterize the temporal difference between the swimmer deformation and a TSW. The normalized 

standard deviation is named as the temporal uniformity 𝜓 and computed as 

 𝜓 = √
1

9
∑|Δ𝜑𝑖 −

𝜋

5
|
2

10

1

⋅
5

𝜋
 (24) 

The average of the experimental Δ𝜑𝑖 is also 𝜋 5⁄  because each cycle of magnetic field rotation 

corresponds to 10 frames. 

 

The values of these characterization parameters obtained from this experiment are summarized in 

Table 1. The 𝑅nor represents the general strength of the TWC in the swimmer deformation. The values of 

𝜖 and 𝜓 describe the spatiotemporal similarity between the swimmer deformation and a TSW. Note that 

the swimmer magnetization profile was distorted in the re-magnetization process and the applied 

magnetic field is shifted due to the addition of �⃗� 𝑠. If these two unideal factors are ruled out, the 

deformation profiles of an on-water swimmer with a sinusoidal magnetization profile activated in a �⃗� 𝑎 

of 9 mT rotating at 40 Hz were predicted and analyzed using the aforementioned steps. The TWC 

vectors of the swimmer in this case are plotted in Fig. 8(b). The resultant characterization parameter 



values are summarized in Table 1 and show that the swimmer swims better if the distortions in its 

magnetization and the overall applied magnetic field are removed. 

 

Table 1: Traveling wave component (TWC) analysis results of on-water and under-water swimming 

setting 
𝑅nor 𝜖 𝜓 

name scenario mode 

traveling sinusoidal wave n.a. n.a. n.a. 1 0 

onwater swimmer water surface sim. 0.047 0.932 0.093 

onwater swimmer water surface exp. 0.046 0.622 0.655 

onwater swimmer under water sim. 0.087 0.744 1.035 

underwater swimmer under water exp. 0.075 0.937 0.781 

 

 

3.1.6 Feedback Controller 

 

An on-water swimmer was placed at an air-water interface and controlled by the superposition of �⃗� 𝑎 and 

�⃗� 𝑠, which were generated by the 3D coil system proposed in our previous work.12 Based on the 

waypoint-following controller that has been proposed in our previous work, a more advanced computer 

vision-based proportional feedback controller was devised with similar working principles. The closed-

loop controller manipulated the swimmer to perform path-following tasks: The swimmer autonomously 

followed six segments of paths that formed the letters ‘UT’, see Fig. 9. The controller changed the 

output magnetic field continuously to create the rotating �⃗� 𝑎 and constant �⃗� 𝑠, while the swimmer position 

was extracted from the live images fed by the optical camera at 60 Hz. Based on the feedback 

information, the controller modifies, also at 60 Hz, the amplitudes and directions of �⃗� 𝑎 and �⃗� 𝑠 to change 

the swimming speed and direction of the swimmer. The clear speed control and small path deviations in 

Fig. 9(b) and (c) demonstrate the good dexterity and maneuverability of the on-water swimmer at an air-

water interface, which can be used to position floating objects. This trial is also shown in Movie 3. 

 



Fig. 9: The path-following results of an on-

water swimmer (1.85×0.85×0.038 mm3) at 

an air-water interface actuated by a rotating 

magnetic field (10 mT, 40 Hz) and a steering 

field (2 mT). The swimmer centroid positions 

are plotted by the dots in (a), while the lines 

mark the specified paths. The swimmer speed 

and its deviation from the desired paths are 

plotted in (b) and (c), respectively. The dashed 

lines divide the data into each path segment. 

This trial is also shown in Movie 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Under-Water Swimming 

 

This subsection discusses the undulatory deformation of the soft magnetic composite sheet when it is 

submerged under water. Being able to generate propulsive forces in water widely extends the range of 

potential applications of a microrobotic device, enabling it to work in tasks such as drug transportation40 

and minimally invasive surgery41. Previously, we have shown that an on-water swimmer moved on a 

horizontal under-water surface.12 However, once the swimmer was away from the surface, it would 

easily curl and then roll with the rotating magnetic field with no net movement. Here, we build an under-

water swimmer with an additional stiff frame, which exhibits ameliorated performance. 

 

3.2.1 On-Water Swimmer Submerged in Water 

 

The shapes of an on-water swimmer submerged in water were predicted by the proposed numerical 



algorithm and shown in Fig. 10(a). In this case, the surface tension and buoyancy forces were removed 

from the simulation, leaving the magnetic torques as the sole factor that deforms the swimmer. Since the 

swimmer curls much easier in water without surface tension, the magnetic field strength in the 

simulations was set to be 0.4 mT and is only 4.4% of the strength used to activate a swimmer at an air-

water interface, i.e., 9 mT. The swimmer was initially flat and then deformed by a constant magnetic 

field at various directions. This simulated case was different with applying a rotating magnetic field, in 

which case the swimmer was highly likely to curls and then rolls with the field with no further shape 

change or net movement. 

 
 Fig. 10: Simulated shapes and the 

corresponding TWC analysis results of 

an on-water swimmer in constant 

magnetic fields of 0.4 mT when the 

swimmer is submerged in water. The 

swimmer is 2.20×0.66×0.03 mm3 large. 

The predicted swimmer shapes in various 

field directions are shown in (a), where 

the dot marks the left end of the 

swimmer. The TWC analysis results are 

plotted in (b), where the dashed circle is 

the equivalent circle. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TWC analysis was performed on the swimmer shapes in this ‘idealized’ case that assumed perfect 

alignment with magnetic fields and no rolling in circles. The analysis results are plotted in Fig. 10(b) 

and summarized in Table 1. The result clearly shows that the on-water swimmer submerged in water 

does not approximate a TSW very well, which is also endorsed by the values of 𝜖 and 𝜓. The deviation 

of the shape of an on-water swimmer submerged in water from a TSW could potentially explain the 

observed inferior swimming performance: The on-water swimmer swims poorly on an under-water 

plane and stops swimming when the plane is absent. 

 



3.2.2 Under-Water Swimmer Characterization 

 

To improve the performance, a stiff frame was attached to the two ends of the soft magnetic composite 

sheet, forming an under-water swimmer. It was observed that the under-water swimmer deforms like a 

traveling wave when a rotating uniform magnetic field was applied along its length (plan 𝑥-𝑧). To 

observe its deformation, the under-water swimmer was clamped at its frame edge and submerged in 

water, see Fig. 11(a). Note that the swimmer’s plane was perpendicular to the water surface, different 

with the on-water swimmer setup. However, this variation did not affect the experimental result due to 

the absence of water surface and buoyancy forces in this case. The swimmer was at the �̃�-�̃� plane of the 

container coordinate frame while the applied uniform magnetic field was at the �̃�-�̃� plane, see Fig. 

11(b). The magnetic field had an amplitude of 9 mT and rotated at 40 Hz in the counter-clockwise 

direction in the �̃�-�̃� plane. The camera recorded the top-view scene at 400 frames per second, and the 

frames of one field rotating cycle are shown in Fig. 11(c-l). It is evident in these frames that the 

swimmer deformed to approximate a traveling wave moving from its right end towards its left end. 

 

 
Fig. 11: Shape observations of an under-water swimmer in a rotating uniform magnetic field and the resultant 

characterization results. The swimmer was fixed as shown in (a) and the magnetic field was applied in the �̃�-�̃� plane in a 

counter-clockwise direction, see (b). Ten consecutive top-view (�̃�-�̃� plane) frames captured in one field rotation cycle are 

displayed in (c-l) chronologically. The lines represent the extracted swimmer shape profiles. The dots plot the simulated 

swimmer profiles using a pinned-pinned boundary condition as an approximation. The swimming characterization results are 

shown in (m). The dashed circle represents the equivalent circle with the magnitude 𝑅𝑒 = 166 𝜇m. 

 

The under-water swimmers can also be characterized by Euler-Bernoulli beam theory. The stiff frame 

creates a fixed-fixed boundary condition for the magnetic sheet. A fixed end can exert a torque and a 

force on the sheet, involving three variables: the torque amplitude, the force amplitude, and the force 

direction. These variables are unknown and cannot be measured or derived at current stage. Thus, a 

pinned-pinned boundary condition was used as an approximation with the sacrifice of ignoring the 

slopes at the sheet ends. With this simplification, the swimmer shapes were predicted from first 

principles, using the proposed numerical strategy. Note that the weight of the swimmer was not 

considered since it pointed along the swimmer width in this case. These results qualitatively described 

what the swimmer shape should look like and were plotted in Fig. 11(c-l). 

 

The shape profiles of the under-water swimmer were extracted from the frames and plotted as the red 

lines in Fig. 11(c-l). The proposed TWC analysis was performed on these profiles to characterize the 



swimmer swimming performance. The resultant TWC vector of each profile is plotted by red dots in 

Fig. 11(m), together with a dashed black circle denoting the equivalent circle with an amplitude of 

166 𝜇m. The values of the characterization parameters are summarized in Table 1. The relatively large 𝜖 
means that the amplitude values of the swimmer deformation were close to the equivalent circle with 

small variations. While the relatively large 𝜓 suggests an evident nonuniformity in the phase angle, 

which agrees with the two large line segments in Fig. 11(m). 

 

Table 1 suggests that the on-water swimmer at water surface in the idealized case is the closest 

approximation to a TSW, exhibiting the ‘best’ swimming performance. The distortion in the 

magnetization and the applied magnetic field for an on-water swimmer deteriorate its swimming 

performance and therefore reduce 𝜖 while increase 𝜓. An on-water swimmer hardly swims under water 

because the absence of the constraints provided by surface tension. A proposed under-water swimmer 

successfully ameliorates the performance, as indicated by more favorable values of 𝜖 and 𝜓. It is also 

concluded that 𝜓 is the dominating parameter that dictates the swimming performance of a swimmer. 

 

The relative magnitude of the characterization parameters between the two experimental cases shows 

that the phase angle of the on-water swimmer changes more consistently, while the swimming 

magnitude of the under-water swimmer has a smaller variation. The on-water swimmer was free to 

shrink and expand at an air-water interface, resulting in a more variable deformation amplitude. 

Additionally, the distorted magnetic field shifted by �⃗� 𝑠 exacerbated the magnitude variance of the TWC 

vectors. In contrast, the ends of the under-water swimmer were fixed and resulted in a higher 𝜖 value. 

However, the temporal uniformity of the under-water swimmer is worse than the one of the on-water 

swimmer, as exhibited by the two large sectors in Fig. 11(m). The reason is that the sheet is longer than 

the frame, forming an initial curvature on its body. When the sheet needs to deform from a ‘convex’ 

shape to a ‘concave’ one, it needs to overcome the constraint posed by the shorter frame, which delays 

the phase angle change. Once the sheet has overcome this constraint, it then moves quickly to ‘catch up’ 

the magnetic field, causing a nonuniform phase angle and a larger 𝜓 value. Overall, the proposed 

characterization parameters provide a meaningful criterion to evaluate and compare the swimming 

performance of different swimmers in various scenarios. 

 

3.2.3 Demonstration of Generating Propulsive Forces 

 

There is no surface tension force on under-water swimmers. As a result, the swimmers tend to roll when 

a rotating magnetic field is applied. This rolling trend, if not counteracted, prevent under-water 

swimmers from generating traveling wave like deformation in rotating uniform magnetic fields. Here, 

experiments are presented to demonstrate that under-water swimmers can generate propulsive forces for 

self-driving and moving loads, when their headings are externally constrained. Fully controlled 

undulatory swimming of under-water swimmers will be investigated in future research. 

 

As a proof-of-concept, an under-water swimmer moved in the presence of a rotating uniform magnetic 

field when it was submerged in water and one side-edge of its frame was pinned to the water surface. 

Two more stiff frames were taped to both the front and the back of the swimmer to dampen its 

oscillation in a rotating magnetic field, see Fig. 12(a). In this configuration, this swimmer stayed right 

beneath the air-water interface and kept a vertical pose. This setup was designed specifically to constrain 

the swimmer orientation for easy actuation. A rotating uniform magnetic field was applied in the �̃�-�̃� 

plane with an amplitude of 11.5 mT and a frequency of 40 Hz. A top-view camera (60 Hz, FOculus) 



recorded the scene and the swimmer centroid sequence are shown in Fig. 12(b). It is shown that the 

swimmer moved in a rotating magnetic field and could reverse its locomotion direction once the 

magnetic field rotated in the opposite direction. Since the swimmer was pinned to the air-water interface, 

this demonstration did not show a fully controlled swimming motion, but it sufficed to reveal the 

propulsive forces created by the undulatory deformation of the under-water swimmer. In practical 

applications, the under-water swimmer should be able to take any pose in 3D space, in which case its 

alignment with the actuating magnetic field remains as a challenge and will be investigated in future 

research. 

 
Fig. 12: Proof-of-concept 

demonstration of an under-water 

swimmer generating propulsive forces 

in a rotating uniform magnetic field. 

The swimmer was pinned to the water 

surface by one of its side edge, see (a). 

The swimmer centroids in a back-and-

forth movement are plotted in (b) by 

dots and crosses. This experiment is 

also shown in Movie 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In another experiment, two under-water swimmers were attached to an acrylic beam, which was 

mounted on a needle through a central hole. The whole setup was submerged in distilled water. A 

rotating uniform magnetic field was applied within a plane that was perpendicular to the beam and 

therefore parallel with the long sides of both swimmers. Under the actuation of a rotating magnetic field 



(20 mT), the two swimmers deformed to generate propulsive forces, that pushed the beam to rotate. 

When the rotating direction of the magnetic field was reversed, the rotating direction of the beam also 

switched. The setup of this experiment and the resultant angular velocity of the beam are shown in 

Fig. S5. A video of this experiment is shown in Movie 5. 

 

Since the swimmers were pre-deformed, they had nonzero net magnetic moments and could experience 

magnetic forces and torques in the applied magnetic field. These effects on the net magnetic moments 

could add to the beam rotation, but their contributions are believed to be negligible. Firstly, the coil 

system was used to create a rotating uniform magnetic field. As a result, the field gradient within the 

workspace was near zero, if not zero due to tolerances, and consequently the magnetic forces were 

minimal. For any time instance within one period of field rotation, there always existed another instance 

when the field pointed the opposite direction with the same amplitude. Thus, the net torque on the whole 

device over one period should remain zero. Secondly, Movie 5 clearly shows that the beam rotated faster 

as the field rotation frequency increased, and the beam changed its rotation direction when the field 

rotation direction is reversed. For a given period of time, neither the net magnetic torque or the net 

magnetic force on the device was sensitive to this frequency or direction change of the actuating field. In 

contrary, the undulatory deformation of swimmers was directly affected by the frequency and the 

direction of field rotation. Thus, it is safe to conclude that the propulsive force that rotated the beam 

mainly came from the undulatory deformation of the two under-water swimmers. 

 

To visualize the propulsive forces generated by the swimmer deformation, microbeads were mixed in the 

water in the shape observation setup. These suspended microbeads indicated the flow disturbance caused 

by the swimmer deformation. A particle image velocimetry (PIV) was performed to extract the flow 

movement using the PIVlab tool proposed by Thielicke et al.42,43 A rectangle enclosing the swimmer was 

excluded from the analysis to avoid any interferences due to the swimmer body deformation. Each frame 

in one field rotation cycle was compared with its immediate next frame. The ten results were averaged 

and shown in Fig. 13. The swimmer pushed and pulled the surrounding microbeads periodically. 

Although the microbeads did not move parallel with the swimmer, they obtained a net movement along 

axis 𝑥 after one period of field rotation. And the net movement direction could be easily reversed by 

rotating the magnetic field in the opposite direction. 

 
Fig. 13: Fluid 

disturbance caused by 

the swimmer 

deformation. The 

averaged PIV results 

across one field rotation 

cycle are shown in (a) 

and (b), corresponding 

to a clockwise rotating 

field and a counter-

clockwise one, 

respectively. The arrow 

above a frame denote 

the travelling direction 

of the swimmer 

deformation. 
 

 



 

The above experiments demonstrated that the traveling wave component (TWC) in the sheet 

deformation of under-water swimmers created propulsive forces that could not only propel the swimmer 

itself to swim, but also carry a certain amount of load. Therefore, the under-water swimmer can be 

potentially used as a power unit for miniature devices to harvest energy form ambient magnetic field and 

convert it to mechanical propulsion, enabling locomotion in future microdevices similar with the 

submarine envisioned in Fantastic Voyage (1966). 

 

4 Conclusions 

 

This work models and characterizes an undulatory swimming sheet, whose swimming ability is enabled 

by its magnetic elastic composite material bearing a sinusoidal magnetization profile. In a rotating 

uniform magnetic field, the sheet deforms into traveling wave like shapes, which interact with the 

surrounding liquid and generate propulsive forces for a non-holonomic bidirectional swimming gait. The 

sheet is made into on-water swimmers and under-water swimmers. The deformation of an on-water 

swimmer is modeled from underlying physical principles, and the model accuracy is endorsed by a 

comparison between the observed and the predicted deformations. An autonomous path-following task 

demonstrates the maneuverability of the on-water swimmer. A proof-of-concept experiment shows the 

capability of generating propulsive forces of the under-water swimmer that is submerged in water. The 

traveling wave component (TWC) is extracted from a swimmer deformation and analyzed to describe its 

spatiotemporal similarity with a traveling sinusoidal wave (TSW), providing an index to compare the 

swimming performance of a swimmer. 

 

The modeling and characterization of the swimming behavior of the soft magnetic composite sheet 

provide an insight into the underlying physics of the undulatory swimming gait. The undulatory 

swimming is not time-reversible and therefore not limited by Purcell's scallop theorem, allowing it to 

function in the low Reynolds number regime in theory. From preliminary tests, both on-water and under-

water swimmers were able to maintain their functionalities in fluids with viscosity values up to 3 mm2 s⁄  

(or cSt in the CGS system of units), which is roughly the viscosity of whole blood. In a fluid with a high 

viscosity, the ideal input rotational field frequency for a given field strength will become lower. 

 

The swimmer shown here could be deployed as microrobotic agents to work in small and constrained 

environments, or integrated into a larger device as a unit to harvest energy from an applied magnetic 

field and convert it into mechanical energy to induce locomotion. As discussed by Hu et al, this 

swimming sheet can be potentially made biocompatible by adding a thin outer layer of biocompatible 

polymer without sacrificing any of its functionalities, allowing it to be deployed in biomedical tasks 

such as drug delivery.7 The knowledge obtained in this study can potentially guide the design and 

optimization of future swimming devices. The control and characterization of the under-water swimmer 

will be investigated in the future research, together with the possibility of the integration of the swimmer 

into larger robotic devices. 
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Untethered miniature soft robots: Modeling and design of a millimeter-

scale swimming magnetic sheet (Supplementary Information) 

 

Swimmer Fabrication 

 

Both on-water and under-water swimmers were fabricated using a replica molding technique with 

negative molds, whose fabrication process is detailed in Fig. S1. First, the geometries of the magnetic 

elastic composite strip and the stiff frame were defined in AutoCAD and then written on a photomask 

using a mask writer (Heidelberg 𝜇PG 501 Maskless Aligner), see Fig. S1(a). 

 

 
Fig. S1: Illustrations of the 

fabrication process of the 

molds used to make on-water 

and under-water swimmers. 

Masks were made by directly 

writing in (a), and then 

placed on top of photoresist 

to control the exposure 

region, see (b) and (c). The 

exposed photoresist remained 

on the wafer, forming the 

desired molds. An additional 

step was used to fabricate a 

soft rubber mold for the stiff 

frame in (c). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

These geometric features were then transferred to a layer of photoresist (SU-8 2025, MicroChem) 

through a standard photolithography process. A layer of photoresist was spin coated on a 3 inches silicon 

wafer (UniversityWafer), soft baked at 65 ℃, and then exposed to ultra-violet (UV) light with the 

corresponding mask on top of it, see Fig. S1(b) and (c). A post-exposure bake (PEB) at 95 ℃ was 

performed to cross-link the exposed portion of the photoresist. After being developed in an organic 

solvent solution (SU-8 Developer, MicroChem), the cross-linked portion of the photoresist stayed on the 



wafer while the rest was wasted away, forming the desired negative (concave) molds. The molds were 

then baked at 170 ℃ for 10 minutes. The baking time and exposure dosage were set according to the 

photoresist datasheet based on the desired mold thickness 𝑇. 

 

As shown in Fig. S1(c), the fabrication of the mold for the stiff frame used the cross-linked photoresist 

as an intermediate positive (protruding) mold to create a negative mold using the silicone rubber (Mold 

Max 20, Smooth-On). This is because both the cross-linked photoresist and the frame are stiff, making it 

problematic to directly use the photoresist mold to create the frame. Thus, a soft rubber mold copied the 

feature from the photoresist mold and was made to bear the frame. The geometric dimension of the 

frame is shown in Fig. S2. 

 
Fig S2: The geometric dimension of the frame 

used by under-water swimmers. The frame is 

30 𝜇m thick. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This process allows easy modification of the geometries of the strip and the frame, facilitating the 

fabrication of swimmers of different sizes. Ecoflex 0050 (Smooth-On) is chosen as the basic polymer 

material for the soft magnetic composite for its excellent softness and elasticity (100% modulus of 12 

psi). This soft polymer is mixed with permanent magnetic powders (MQFP-15-7, NdPrFeB, 

Magnequench) at a 1:1 mass ratio. The magnetic powders have a nominal diameter value that is less 

than 10 𝜇m. 

 

Electromagnetic Coils 

 

A custom-built 3D electromagnetic coil system provided the magnetic field used in the autonomous 

path-following experiment of on-water swimmers. The coil system has 3 pairs of coils nested along the 3 

orthogonal axes of a 3D Cartesian coordinate system. Each pair of coils was arranged to approximate a 



Helmholtz coil configuration. All coils are supported by analog servo drives (30A8, Advanced Motion 

Controls), which connect to a computer through a multifunction analog/digital I/O board (Model 826, 

Sensoray). 

 

A custom-built 2D electromagnetic coil system was used in the observation of the on-water swimmer 

deformation. This 2D coil system is identical with the 3D coil system except that the inner-most pair of 

coils was removed to accommodate a larger workspace. 

 

Parameter Measurement 

 

In order to measure the Young's modulus 𝐸 of the soft magnetic composite, two sheets 

(1.38×4.61×0.134 mm3 and 1.36×4.66×0.118 mm3) were fabricated but not magnetized, and then 

attached to stiff acrylic stages, forming cantilever beams as shown in Fig. S3(a). A micro-force sensing 

probe (FT-S100 probe, FemtoTools) mounted on a robotic arm (FT-RS1000-SCOPE, FemtoTools) 

applied a perpendicular point force 𝐹  on the sheet. The bending moment profile 𝑄 of the sheet is drawn 

in Fig. S3(b) and is described as 

 𝑄(𝑥) = −𝐹𝑥 + 𝐹𝐿𝑝 (S1) 

where 𝐹 is the force amplitude and 𝐿𝑝 is the length from the fixed point of the sheet to 𝐹 . When the 

sheet deformation is small, its curvature 𝜅 can be approximated as 

 𝜅 = d2𝜔 d𝑥2⁄  (S2) 

Substituting the expressions of 𝑄 and 𝜅 into Eq. (14), the displacement can be calculated with the 

known boundary conditions of 𝜔(0) = 0 and d𝜔(0) d𝑥⁄ = 0. The result is 

 𝜔(𝑥) = 𝐹 ∙ (−𝑥3 + 3𝐿𝑥2) ∙ (6𝐸𝐼)−1 (S3) 

At the point of 𝐹 , the displacement is 

 𝜔(𝐿𝑝) = (𝐹𝐿𝑝
3 ) ∙ (3𝐸𝐼)−1 (S4) 

Finally, there is 

 
𝐸 =

4𝐿𝑝
3

𝑊𝑇3
∙
𝐹

𝜔
 

(S5) 

Using Eq. (S5), 𝐸 can be calculated after measuring the 𝐹 versus 𝜔, i.e., the slope in Fig. S3(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S3: Measurement of the Young's 

modulus 𝐸 of the soft magnetic 

composite. A top-view photography 

of the measurement setup is shown in 

(a), where the sheet is marked out by 

red dashed lines. The bending 

moment 𝑄 caused by the point force 

𝐹 is illustrated in (b). The data of one 

example trial is shown in (c). The dip 

caused by the mutual attraction 

between the probe and the sheet is 

marked out. Only the data within the 

blue region is used in the result 

calculation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the force probe was initially placed near the sheet, and then pushed perpendicularly towards the 

sheet. After contact was detected, the force probe continued to push the sheet to a certain distance, and 

then retrieved back to its original position. During this process, the force 𝐹 and displacement 𝜔 of the 

probe were recorded. The experimental data of one representative trial is plotted in Fig S3(c). When the 

probe moved close enough to the sheet, the sheet was pulled to the probe by static electricity, causing the 

force reading of the probe to drop, see the dip in Fig S3(c). Note that the derivation of Eq. (S5) requires 

the sheet deformation to be small. Therefore, only the data within a range of 50 𝜇m after the contact was 

used to calculate a best fit linear regression relationship between 𝐹 and 𝜔. The results of five trials for 

the two sheets are summarized in Table S1. From these experimental results, the Young's modulus 𝐸 of 

the magnetic elastic composite material was measured to be 0.165 MPa. 

 

 

 

 

 

 



Table S1: Measured Young's Modulus Values (Data Unit is MPa) 

 

Trial Index 
Swimmer 1 Swimmer 2 

leading falling leading falling 

1 0.143 0.122 0.186 0.160 

2 0.155 0.138 0.185 0.159 

3 0.168 0.150 0.198 0.159 

4 0.170 0.151 0.202 0.174 

5 0.158 0.154 0.205 0.172 

 

Simulation Algorithm 

 

The proposed numerical algorithm to iteratively predict the swimmer shapes in the presence of a known 

magnetic field is explained using the pseudocode in Algorithm 1. One example of the simulated 

swimmer shape is shown in Fig. S4(a). The overall bending moment profile of the swimmer body and 

the bending moments caused by different components are plotted in (b-d). It is shown that the bending 

moment and the surface tension counteract each other and play the most important role in deciding the 

overall bending moment profile. 

 

Algorithm 1: Swimmer Shape Simulation 

1. procedure SIM_SHAPE(�⃗⃗� (𝑠), �⃗� ) % �⃗⃗� (𝑠): magnetization profile. �⃗� : magnetic field 

2. specify 𝑛 and 𝑁  % 𝑛: number of simulation points. 𝑁: iteration step size 

3. specify 𝑒       % 𝑒: convergence tolerance 

4. set 𝜔(𝑠), 𝛼(𝑠), and 𝜅pre(𝑠) to be all zeros   % 𝛼: simulation point angle 

5. specify 𝐿, 𝑊, and 𝑇   % swimmer length 𝐿, width 𝑊, and thickness 𝑇 

6. calculate ∆𝑚 = 𝑀 ∙ (𝑊 ∙ 𝑇 ∙ 𝐿 𝑛⁄ ) % magnetic moment of each simulation point 

7. do 

8. calculate 𝜃𝑡(𝑠) from 𝜔(𝑠) using Eq. (16) 

9. calculate 𝐹𝑏(𝑠), 𝐹t, len, v(𝑠), 𝐹t, wid, v(𝑠), and 𝐹t, wid, h(𝑠) from 𝜃𝑡(𝑠) using Eq. (3-6) 

10. 𝛽(𝑠) = ∠�⃗� − (𝛼pre(𝑠) + ∠�⃗⃗� (𝑠)) % angle between �⃗�  and local magnetic moment 

11. 𝜏(𝑠) = ∆𝑚 ⋅ |�⃗� | sin 𝛽(𝑠)     % magnetic torque profile 

12. calculate 𝑄(𝑠) from forces and torques using Eq. (7-13)  % bending moment 

13. calculate 𝜅(𝑠) from 𝑄(𝑠) using Eq. (14)  % curvature of the swimmer body 

14. ∆𝜅(𝑠) = (𝜅new(𝑠) − 𝜅pre(𝑠)) 𝑁⁄  

15. calculate 𝜔(𝑠) and 𝛼(𝑠) based on 𝜅new(𝑠) = 𝜅pre(𝑠) + ∆𝜅(𝑠) 

16. do 

17. re-calculate 𝐹𝑏, 𝐹t, len, v, 𝐹t, wid, v, and 𝐹t, wid, h 
18. rotate and/or vertically shift swimmer to zero net force and torque, and update 𝜔(𝑠) and 

𝛼(𝑠) correspondingly 

19. while swimmer experiences nonzero net external force or torque 

20. while the 𝜔(𝑠) change in this iteration is larger than 𝑒 % loop until it converges 

21. return 𝜔(𝑠) 
 



 
Fig. S4: One example of swimmer shape simulation. The simulated swimmer shape is plotted in (a), with its corresponding 

bending moment profile shown in (b). The bending moment caused by the active component, i.e., the magnetic torques, and 

the reactive components, i.e., surface tension and buoyancy, are plotted in (c) and (d), respectively. 

 

Under-Water Swimmer Propulsion Demonstration 

 

An experiment was set up to experimentally demonstrate that the undulatory deformation of under-water 

swimmers could generate propulsive forces that could not only move themselves but also carry a certain 

load. In this experiment, two under-water swimmers were mounted at the two ends of a 50 mm long 

acrylic beam. Each end of the beam had two fingers that provided constraints to the mounted under-

water swimmers. The beam was mounted on a pole that penetrated through its central circular opening. 

A photo of the setup is shown in Fig S5(a). 

 

 
Fig. S5: An experimental demonstration of the capability of generating propulsive forces of under-water swimmers. A photo 

of the experimental setup is shown in (a). Note that the container was fully filled with liquid in the experiment. The angular 

velocity data of the beam in the experiment is shown in (b). The orientation angle of the beam was extracted from every 

frame of the experimental video and then used to calculate the angular velocity. A moving-average filter of a window size of 

45 (corresponding to 1.5 sec in experiment) was applied before the calculation. 



 

When a rotating uniform magnetic field was applied in a plane that is parallel with the under-water 

swimmers, i.e., perpendicular to the beam, the two swimmers deformed into undulatory shapes and the 

traveling directions of their deformation profiles were opposite to each other. As a result, the propulsive 

forces caused by their undulatory deformations had anti-parallel directions. Similar with a mill, the two 

swimmers pushed the beam to rotate. As the rotation frequency of the actuating magnetic field changed, 

the amplitudes of the propulsive forces varied correspondingly, altering the angular velocity of the beam. 

The angular velocity data of the beam in this experiment is plotted in Fig S5(b). 

 


