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Abstract—This paper presents a new optimization-based
method to control three micro-scale magnetic agents operating in
close proximity to each other for applications in microrobotics.
Controlling multiple magnetic microrobots close to each other
is difficult due to magnetic interactions between the agents, and
here we seek to control those interactions for the creation of
desired multi-agent formations. Our control strategy arises from
physics that apply force in the negative direction of states errors.
The objective is to regulate the inter-agent spacing, heading and
position of the set of agents, for motion in two dimensions,
while the system is inherently underactuated. Simulation results
on three agents and a proof-of-concept experiment on two
agents show the feasibility of the idea to shed light on future
micro/nanoscale multi-agent explorations. Average tracking error
of less than 50 micrometers and 1.85 degrees is accomplished for
the regulation of the inter-agent space and the pair heading angle,
respectively, for identical spherical-shape agents with nominal
radius less than of 250 micrometers operating within several
body-lengths of each other.

I. INTRODUCTION

Magnetic actuation of microrobots has been recognized as a
safe and efficient approach to access small remote spaces with
a wide range of potential applications in drug delivery [1],
cell lysis/sorting [2], micro-assembly/disassembly [3]. The
ability to exert independent control over a team of microrobots
working together on a task has potential to increase task
speed and capability to perform parallel operations [4].
However, team control of magnetic micro-agents remains
an open-ended problem as in most actuation systems, all
magnetic micro-agents share a global driving magnetic signal.
In this way, all agents receive identical control inputs and
thus it is difficult to steer independently for complex task
completion [5].

In the microrobotics field, a variety of approaches have been
explored toward the team control of magnetic microrobots:
Miyashita et al. [6] utilized local magnetic interaction forces
to create a few stable formations in two dimensions of a set
by dynamically remagnetizing some of the agents. However,
that method is limited to a small set of stable configurations,
has no control over the formation orientation, cannot be

generalized to microrobots moving in three dimensions,
and is only applicable to sets of agents which are each
magnetically unique. Cappelleri et al. [7] utilized row-column
planar addressing micro-coils made with printed circuit board
(PCB) technology to localize the field driving magnetic
robots. Mellal et al. [8] incorporated optimal linear quadratic
integrator (LQI) control to navigate two magnetic microbeads
independently in 1D. Nevertheless, all these studies have
been done only for a small number of agents or entangled
with severe limitations. Recently, Abbot et al. [9] derived
a general compact analytic approach using linear-algebraic
representations to find a minimum-power dipole solution with
application to electromagnetic formation flight. However, their
approach may not be applicable to microrobotic system that is
heavily underactuated and the relation between coil currents
and inter-dipole forces is not always linear.

Our previous work [10] for the first time introduced a
method to control the motion of two identical agents in close
proximity with one control input angle only, while magnetic
moment was constrained to the horizontal plane. Additionally,
the full 2D motion control of the two-agent configuration was
accomplished in [11] with two control input angles, while
magnetic moment was free to rotate in 3D. To that end, the
spatially-uniform external field created only torque to orient
micro-agents and as a result the inter-agent force appeared
between agents. The agents’ magnetic moment angles were
modulated to regulate this force. Here, we apply the same
general use of inter-agent forces, but with a new controller
for three identical agents to coordinate their relative positions
and orientation in close proximity. However, the system is
now underactuated as there are only two control input angles
associated to the orientation of the magnetic moments versus
at least three states required to describe the relative position
of the three agents. Since there is no exact solution to this
underactuated system, this work employs a fitness function
optimization method. The proposed approach can pave the
path for the team control of microrobots at micro/nanoscales.

The paper is structured as follows. Section II describes the
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Fig. 1: 3D pairwise orientation parameters defined in global and local
coordinates for agents in close proximity with magnetic moments mmm1, mmm2
and mmm3 aligned with the actuation field BBBa. The pairwise distance vectors
connecting agent i to agent j are denoted by rrri j , where i, j ∈ {1, 2, 3}. The
radial and transverse coordinates are assigned locally with respect to each
pair. The actuation field and magnetic moments’ orientation are all defined
arbitrarily with respect to the first pair axis (team’s local reference) shown by
er12 and et12 . The local coordinates associated to other pairs are not sketched.
The 2D motion of the agents occurs at the interface between water and oil.
The out-of-plane angle that magnetic moments m makes with the z-axis within
the cyan plane is denoted by α and the in-plane angle that the projection of
magnetic moment makes with the reference radial axis in the motion plane is
shown by ψ . 3D total forces acting on each agent are not shown for simplicity
but clearly explained in the text.

kinematics of agents and our method to regulate the relative
motion of three agents. Section III presents our simulation and
experimental results. This paper is concluded in section IV.

II. CONTROL OF THREE-AGENT CONFIGURATION

This section introduces the kinematics describing generic
representation of a team of three agents, and lays the
foundation for controlling a three-agent configuration.

A. Magnetic actuation and inter-agent kinematics

Following the convention, magnetic flux density is denoted
by BBB. A magnetic moment mmm represents the field orientation
of a magnetic microrobot agent. Under the act of an external
magnetic field or via local magnetic interaction with other
agents of a set, each agent may experience both force FFFm
and torque τττ , which can be calculated by FFFm = (mmm ·∇)BBB and
τττ = mmm×BBB, where ∇ here is the material gradient [12]. We
base our analysis on the assumption that the magnetic moment
mmm of all magnetic agents in the workspace align with the
applied field BBBa. We use the angle(s) of the applied field as our
control input(s) to the entire system. Consider three identical
magnetic agents with magnetic moments mmm aligned with the
uniform external magnetic field BBBa applied in the workspace
for actuation in a two-dimensional (2D) horizontal plane at
oil-water interface as sketched in Fig. 1. As the applied field is
uniform over space, no external magnetic forces are generated
(∇BBBa = 0).
The local in-plane control input angle ψ defined as the angle
between the projection of the actuation field BBBa and the vector
rrr12 in the motion plane as sketched in Fig. 1. Similarly,
ψG = ψ +φ is the in-plane control angle in global coordinates

xyz. The out-of-plane (tilting) control input angle measured
down from the z-axis is denoted by α . In this work agents
are capable to magnetically rotate in 3D. In other words, both
out-of-plane and in-plane rotations are feasible. To realize this
assumption, we use spherical agents with minimal surface
area to demand least agent-liquid surface energy. As such,
magnetic moment orientation can be characterized freely in
3D by 2 DOF variables ψ and α . We express all vectors with
respect to a global coordinate frame after all. Let iFFF tot denote
the total force vector created at the location of agent i by
the rest of agents of the set, then iFFF tot = ∑k 6=i FFFki whereby
k ∈ {1, 2, . . . , n} with n as the number of agents, and

FFFki(rki, ψ, α) = 3µ0
4πrki

5 [(mmmk ··· rrrki)mmmi +(mmmi ··· rrrki)mmmk

+(mmmk ···mmmi)rrrki− 5(mmmk···rrrki)(mmmi···rrrki)

r2
ki

rrrki] (1)

is the pairwise magnetic force exerted at the location of agent
i by agent k [12]. Here µ0 is the permeability of free space,
mmmk = mmmi is the magnetic moment vector, rrrki is the separation
vector connecting agent k to agent i, and rki is the norm of this
vector. In local Cartesian coordinates defined exclusively for
each pair of agents (êri j , êti j , êzi j ), the net radial and transverse
components of the total magnetic force exerted on agent j by
the rest of agents, linked to pair i j can be written as

jFFFri j = (jFFF p ·
rrri j

‖rrri j‖
)êri j , and (2a)

jFFF ti j = (z-component{jFFF p×
rrri j

‖rrri j‖
})êti j . (2b)

where jFFF p is the projection of jFFF tot in the motion plane.
Without loss of generality, we make this assumption that
magnetic tilting force jFFFzi j will be counteracted by the surface
tension at the liquid interface. To obtain the states velocities,
the subtraction of total forces after being projected to the
associated pair separation vector by a dot or cross product
is calculated depending whether the state is of radial (ri j) or
transverse (φi j) form, and represent these difference terms for
agent i by iFri j and iFti j , respectively.

ṙi j =
ijFr

σ
=

iFri j − jFri j

σ
, and (3a)

ri jφ̇i j =
ijFt

σ
=

iFti j − jFti j

σ
. (3b)

Here σ is the fluid drag constant. The microrobots used in this
study are spheres with the nominal radius of 250 µm, and are
experiencing low Reynolds number laminar fluid flow with a
negligible net acceleration (inertia) on each agent. Therefore, a
first-order model is considered to describe the agents’ motion
based on the Stokes fluid drag model.

B. Optimization-based control law

The state representation of three agents is not unique. In
general, a three-agent configuration can be represented by
a triangle as shown in Fig. 1. To fully describe the system
globally in 2D, there are four states needed. For example,
three separations and one pair heading xxx = [r12 r13 r23 φ ]T , or
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two separations with the intermediate angle plus over one pair
heading xxx = [r12 r13 θ1 φ ]T whereby φ can be the heading of
any arbitrary pair. Our goal is to find ψ and α angles solution
that minimizes a weighted L2-norm fitness function so that the
relative spacings and angles of the pairs are pushed toward the
desired ones between a set of 3 magnetic agents. Let’s state
our optimization problem as follows:

minimize
ψ, α

f =
n

∑
i, j=1
‖ϕ(eri j(t +1|t))+ γ

ijFr‖2

+λ (
n

∑
i, j=1
‖ϕ(eti j(t +1|t))+ γ

ijFt‖2)‖D(
eti j

Γ
)‖,

(4)
The proposed fitness function is a weighted sum of corrective
radial forces and transverse forces. To distinguish the opposite
sign of the radial and transverse forces ϕ is considered which
could be either a binary function such as ϕ = sgn(.) leading
to a binary response around the desired states, or a smooth
logistic function such as ϕ = 2( 1

1+e−βx − 0.5), whereby the
error input is denoted by x and the slope of attraction and
repulsion toward the goal is denoted by β . Also λ denotes
the weight to specify the tracking of whichever state of
separation r or pair heading angle φ is more important for
a particular trajectory. For two-agent configuration, the error
in transverse state φ denoted by et gets zero at ψ = 0◦

or 90◦. However, these angles may spontaneously generate
undesirable largest radial forces that would lead to a small
steady error in separation state (refer to [11] for further
details). One can simply compensate this small artifact by
defining a deadzone D(.) over the transverse state with a small
width Γ with value around 0.5◦.

III. RESULTS

A. Simulations

A simulation environment based on the proposed physical
model is designed to enable prediction of agents’ behaviors
under the act of controller so as to be able to justify
and optimize the experimental observations. Fig. 2 shows
numerical simulations of the motion trajectory of magnetic
agents in three-agent configuration using optimization-based
controller. This set of simulations are a time integration of
agents’ position vector velocity, ẋxxi =−

iFFF tot
σ

, i ∈ {1, 2, 3} for
various initial conditions of triangle and collinear, including
parameter |m|= 10−6 Am2. Due to the non-convexity of fitness
function expressed in (4), 4-start gradient descent optimization
was employed to guarantee finding the global minimum. The
agent-to-agent capillary force and agent-liquid-wall capillary
force, as well as inertial forces are ignored in the simulation.
Here we only discuss three candidate scenarios of three-agent
configurations.

a) Symmetrical collinear case: In Fig. 2(a), a
symmetrical collinear case is investigated where three
agents are initially too far from each other and positioned
symmetrically in a line with respect to the third agent at
center. The controller task is to choose the input magnetic field

angle(s) to push the relative spacing and pair heading angle
toward the goal state: (r12 = 2rdes,r13 = r23 = rdes,φ12 = φdes).
The desired pairwise separation rdes is reached when the
sketched surrounding dashed-line circles around agents with
radius equal to 0.5rdes come into contact with one another.
Initial positions are denoted by circle and current positions
with diamond. The desired separation and pair heading
are set at 7R and 45◦, respectively. It can be seen from
Figs. 2(a) and 2(b) that the controller approaches the goal
configuration and the error reduces to a small value over
time. We have seen in simulation that the controllers are
stable for the symmetrical collinear case for a wide variety of
initial conditions. The switching behavior of the control input
is apparent both in the trajectory inset and in the time-series
graph in Fig. 2(b) to maintain the pairs’ orientation at desired
angle. It can be noted that the symmetrical collinear is an
augmented case of two-agent configuration with the third
agent staying stationary.

b) Equilateral triangle case: Fig. 2(c) shows
the case where three agents initially hold a random
triangle configuration. The controller task is to choose
the input magnetic field angle(s) to push the relative
spacings only toward an equilateral triangle goal state:
(r12 = r13 = r23 = rdes). It is clear from Figs. 2(c) and 2(d) that
the controller approaches the goal configuration and the error
reduces to a small value over time. We have seen in simulation
that equilateral triangle goal is reachable for some of initial
conditions.

c) Trapping linear case: Fig. 2(e) shows the case where
three agents start from a random triangle configuration and
are forced to reach an equilateral triangle. However, agents
get stuck at a line configuration appeared on their planned
path. The special hint about linear configuration is that no
transverse forces can be created at the corresponding solution
angles leading the agents to get stuck in a line. Further
details can be found at [11]. It can be justified from the
graphs in Fig. 2(f) that once the line trapping happens, control
angles ψ and α aggressively starts switching back and forth
as highlighted in the yellow window. The reason is that in
our current tests, the multi-start optimization routine always
strictly returns the lowest global minima out of multiple
existing global minima. Therefore, for the sake of continuity
this consideration should be applied into our future attempts
that whenever algorithm faces with multiple global minima at
the current time step, it chooses whichever minimum that is
closest to the solution from the previous time step.

We note that the total separation error ertot in the first two
cases is monotonically decreasing until it reduces to zero at
goal state: a good empirical sign that the proposed control law
is effective for these configurations.

B. Experimental setup

Our identical smooth spherical agents are produced in a
batch process using a fluid-assisted method similar to what
we established in [11]. Magnetic fields for agent actuation
are created in an electromagnetic coil system with three pairs
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Fig. 2: Three-agent configuration control simulations using multi-start gradient descent method. From left to right are shown the motion trajectory and time
evolution of separations and pair heading angle states errors along with the control inputs ψ and α for: (left) symmetrical collinear, (middle) equilateral
triangle, and (right) trapping linear configurations. The top plots show the motion trajectory simulations in solid line. The desired pairwise separation rdes is
reached when the sketched surrounding dashed-line circles around agents with radius equal to 0.5rdes come into contact with one another. Initial positions
are denoted by circle and current positions with diamond. Here the agent radius is 250 µm, the desired separation and pair heading are set at 7R and 45◦,
respectively, and |m|= 10−6 Am2. Pairwise separation errors and total L2-norm of these errors are represented by eri j and ertot , respectively.

of coils nested orthogonally to create fields in 3D. Further
details on electronic setup and image detection can be found
at [11]. As we need to deal with multiple identical agents in
this work, a Kalman filter was implemented to associate the
detections corresponding to the same agent over time. Two
identical agents are immersed in a glass Petri dish and sit at
water-oil interface as illustrated in Fig. 3.

C. Experiment

Two-agent configuration is a building block of three agents.
Therefore, as a preliminary proof-of-concept of three-agent
configurations, we tested this new optimization-based method
on two-agent configuration to evaluate the performance of
the controller. Fig. 4 shows the experimental result for the
controller to track a changing goal state. RMS tracking error of
less than 50 µm and 1.85◦ is accomplished for the regulation
of the separation r and the pair heading angle φ , respectively.
Thus, the optimization-based controller has the capability
to operate as efficient as our previous controllers in [11].
The control inputs are bounded and following a trend under
the influence of the controller. Also one can control the
center-of-mass (COM) position of the set of agents besides

3-axis magnetic coil

magnetic pair

Petri dish

oil

water

x y

z 5 cm

1 cm

Fig. 3: Experimental setup. In the inset image of agent, two spherical
microrobots sit at the interface of water-oil inside a glass Petri dish. The
agents are driven in horizontal plane by an electromagnetic coil system with
three pairs of coils capable of producing fields in 3D.

the relative states using a 2D magnetic field gradient that is
superimposed on the uniform field signal. Further details can
be found at [11]. A video of this experiment is available as
supplementary material [S1].
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Fig. 4: (a) Separation r and (b) pair heading φ tracking using
optimization-based control at water-oil interface, (c) the in-plane control angle
ψ and (d) the out-of-plane tilting control angle α . RMS tracking error of less
than 50 µm and 1.85◦ is accomplished for the regulation of the separation and
the pair heading angle, respectively. A video of this experiment is available
as supplementary material [S1].

IV. CONCLUSION AND DISCUSSIONS

In this paper, we proposed a new systematic controller to
tune the 2D motion of three identical magnetic microrobots
in close proximity with each other using the same framework
we developed in the past with focus on the inter-agent forces.
We conducted numerical simulations to verify the method
over two particular configurations of symmetrical collinear
and equilateral triangle. Furthermore, some challenges were
identified in terms of optimization routine that need to
overcome in future studies. Proof-of-concept test performed
on two agents shows evidence of effectiveness of the proposed
controller to be considered as a tool for running the three-agent
experiments. The presented controller in this paper was just a
preliminary approach to systematically formulate the problem
of multi-agent formation control of magnetic microrobots and
not the most elegant one. In future work, we will investigate
the use of an underactuated technique and stability analysis
to make the proposed controller generalized for three or more
agents. For example, instead of reaching the goal by taking a
path direction for which input forces do not exist one can
decompose that direction into multiple basis directions for
which input forces do exist.
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